The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of...The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.展开更多
Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation ch...Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation characteristics of specimens under various conditions were studied.According to characteristics of the mineral,a new three stages constitutive equation was proposed.The conclusions are as follows:The axial strain,peak strain and maximum strength of seafloor massive sulfide increase with the confining pressure.The elastic modulus of the metal sulfide samples is decreased sharply with the increase of confining pressure.According to characteristics of seafloor massive sulfide,the constitutive equation is divided into three parts,the comparison between theoretical curves and experimental data shows that both of them are in good agreement,which also proves the correctness of the constitutive equation for uniaxial compression.展开更多
The Wadi Bayhan mafic-uhramafic intrusions associated with magmatic PGE-bearing Cu-Ni sulphide deposit are located in the south margin of the Arabian-Nubian Shield, SW Yemen. The intrusions consist of du- nite, olivin...The Wadi Bayhan mafic-uhramafic intrusions associated with magmatic PGE-bearing Cu-Ni sulphide deposit are located in the south margin of the Arabian-Nubian Shield, SW Yemen. The intrusions consist of du- nite, olivine-pyroxenite, lherzolite, hornblendite, gabbro and gabbronorite. The dunite and lherzolite are the main host rock for the Cu-Ni ores. The new data of the chemical compositions of the rocks have SiO2 (50% - 53.6% ), AI203 (0-32%) and MgO (4%-28%), and relatively low TiO2 (0-3.2%) and K2 0 + Na20 (0. 04% - 5.2% ). The geochemical characteristics indicate that the parental magma is high-magnesium tholeiitic. Sulfur had reached saturation and immiscible sulfides droplets segregated from silicate magmas before their emplacement.展开更多
Routine GC/MS analysis may apply to the volatilized Low-Molecular-Weight compounds in saturate and aromatic hydrocarbon fractions;thus,relative studies using this technique inevitably bring about some limitations on d...Routine GC/MS analysis may apply to the volatilized Low-Molecular-Weight compounds in saturate and aromatic hydrocarbon fractions;thus,relative studies using this technique inevitably bring about some limitations on distribution of miscellaneous sulfur atom.In this article,Fourier Transform Ion Cyclotron Resonance Mass Spectrometry(FT-ICR MS)with high resolution is employed to investigate the distribution of organic sulfur compounds(OSCs)in the crude oil typically derived from the Eogene carbonate-evaporite sediments with further chemical compositional characterization in molecular level by miscellaneous atomic type,carbon number,and double bond equivalent(DBE).A variety of miscellaneous atomic types with S1,S2,S3,OS,OS2,O2S,O2S2,NS,and NOS etc.(S1 means those OSCs with one sulfur atom in a molecule)were identified in OSCs in these oil samples.High levels of alkyl thioether series compounds with one ring structure were presented mainly in the crude oil in the Jianghan Basin whereas high amounts of benzothiophene,dibenzothiophene etc.compounds with higher values in DBE and carbon number range occurred in the sulfur-rich heavy oil in the Jinxian Sag.Although carbonate-evaporite sediments deposited in the saline lacustrine facies in the Eogene basin both occurred in the Jinxian Sag and Jianghan Basin,obviously,they possess different chemical diagenetic pathway of sulfur under various microbial reactions,leading to diverse distributional characteristics on biomarkers,OSCs,and even different hydrocarbon generation mechanism of immature crude oil.展开更多
Cadmium sulfide(Cd S) buffer layers with the scale of 10 cm×10 cm are deposited by chemical bath deposition(CBD) with different temperatures and thiourea concentrations under low ammonia condition.There are obvio...Cadmium sulfide(Cd S) buffer layers with the scale of 10 cm×10 cm are deposited by chemical bath deposition(CBD) with different temperatures and thiourea concentrations under low ammonia condition.There are obvious hexagonal phases and cubic phases in Cd S thin films under the conditions of low temperature and high thiourea concentration.The main reason is that the heterogeneous reaction is dominant for homogeneous reaction.At low temperature,Cd S thin films with good uniformity and high transmittance are deposited by adjusting the thiourea concentration,and there is almost no precipitation in reaction solution.In addition,the low temperature is desired in assembly line.The transmittance and the band gap of Cd S thin films are above 80% and about 2.4 e V,respectively.These films are suitable for the buffer layers of large-scale Cu(In,Ga)Se2(CIGS) solar cells.展开更多
文摘The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.
基金Project(2012AA091291)supported by the National High-tech Research and Development Program of ChinaProject(51074179)supported by the National Natural Science Foundation of ChinaProjects(JCYJ20130401160614378,JCYJ20140506150310437)supported by Shenzhen Science and Technology Innovation Basic Research Foundation,China
文摘Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation characteristics of specimens under various conditions were studied.According to characteristics of the mineral,a new three stages constitutive equation was proposed.The conclusions are as follows:The axial strain,peak strain and maximum strength of seafloor massive sulfide increase with the confining pressure.The elastic modulus of the metal sulfide samples is decreased sharply with the increase of confining pressure.According to characteristics of seafloor massive sulfide,the constitutive equation is divided into three parts,the comparison between theoretical curves and experimental data shows that both of them are in good agreement,which also proves the correctness of the constitutive equation for uniaxial compression.
文摘The Wadi Bayhan mafic-uhramafic intrusions associated with magmatic PGE-bearing Cu-Ni sulphide deposit are located in the south margin of the Arabian-Nubian Shield, SW Yemen. The intrusions consist of du- nite, olivine-pyroxenite, lherzolite, hornblendite, gabbro and gabbronorite. The dunite and lherzolite are the main host rock for the Cu-Ni ores. The new data of the chemical compositions of the rocks have SiO2 (50% - 53.6% ), AI203 (0-32%) and MgO (4%-28%), and relatively low TiO2 (0-3.2%) and K2 0 + Na20 (0. 04% - 5.2% ). The geochemical characteristics indicate that the parental magma is high-magnesium tholeiitic. Sulfur had reached saturation and immiscible sulfides droplets segregated from silicate magmas before their emplacement.
基金supported by the National Basic Research Program of China(Grant No.2012CB214706)Major National Science and Technology Projects(Grant No.2011ZX05008-002-33)+1 种基金Gas Hydrate Survey in South China Sea of China(Grant No.GZH2011003-05-04-01)the National Natural Science Fundation of China(Grant Nos.40873048,41173053)
文摘Routine GC/MS analysis may apply to the volatilized Low-Molecular-Weight compounds in saturate and aromatic hydrocarbon fractions;thus,relative studies using this technique inevitably bring about some limitations on distribution of miscellaneous sulfur atom.In this article,Fourier Transform Ion Cyclotron Resonance Mass Spectrometry(FT-ICR MS)with high resolution is employed to investigate the distribution of organic sulfur compounds(OSCs)in the crude oil typically derived from the Eogene carbonate-evaporite sediments with further chemical compositional characterization in molecular level by miscellaneous atomic type,carbon number,and double bond equivalent(DBE).A variety of miscellaneous atomic types with S1,S2,S3,OS,OS2,O2S,O2S2,NS,and NOS etc.(S1 means those OSCs with one sulfur atom in a molecule)were identified in OSCs in these oil samples.High levels of alkyl thioether series compounds with one ring structure were presented mainly in the crude oil in the Jianghan Basin whereas high amounts of benzothiophene,dibenzothiophene etc.compounds with higher values in DBE and carbon number range occurred in the sulfur-rich heavy oil in the Jinxian Sag.Although carbonate-evaporite sediments deposited in the saline lacustrine facies in the Eogene basin both occurred in the Jinxian Sag and Jianghan Basin,obviously,they possess different chemical diagenetic pathway of sulfur under various microbial reactions,leading to diverse distributional characteristics on biomarkers,OSCs,and even different hydrocarbon generation mechanism of immature crude oil.
基金supported by the National High Technology Research and Development Program of China(No.2012AA050701)
文摘Cadmium sulfide(Cd S) buffer layers with the scale of 10 cm×10 cm are deposited by chemical bath deposition(CBD) with different temperatures and thiourea concentrations under low ammonia condition.There are obvious hexagonal phases and cubic phases in Cd S thin films under the conditions of low temperature and high thiourea concentration.The main reason is that the heterogeneous reaction is dominant for homogeneous reaction.At low temperature,Cd S thin films with good uniformity and high transmittance are deposited by adjusting the thiourea concentration,and there is almost no precipitation in reaction solution.In addition,the low temperature is desired in assembly line.The transmittance and the band gap of Cd S thin films are above 80% and about 2.4 e V,respectively.These films are suitable for the buffer layers of large-scale Cu(In,Ga)Se2(CIGS) solar cells.