Flotation reagents have a complex behaviour in the beneficiation of base minerals in clayey ores.Interaction effects of reagents on the efficiency of copper flotation for a highly clayey low-grade sulphide ore were in...Flotation reagents have a complex behaviour in the beneficiation of base minerals in clayey ores.Interaction effects of reagents on the efficiency of copper flotation for a highly clayey low-grade sulphide ore were investigated using a central composite design.Preliminary results showed that sodium-isopropyl-xanthate(SIPX)and O-isopropyl-N-ethyl-thionocarbamate(IPETC)were found to be the most efficient collectors in the presence of lime as the pH regulator.The effects of dosage of collectors(SIPX and IPETC)and the dosage of methyl-isobutyl-carbonyl(MIBC)as frother on the separation efficiency were evaluated at different pH levels.Based on the analysis of variance(ANOVA),the interaction effects of the collector−pH and collector−frother were significant for the separation efficiency.At the low level of collector dosage,increasing pH from 9 to 11 enhanced copper separation efficiency from 81%to 86%for IPETC and from 77%to 86%for SIPX.Results of ANOVA showed that the maximum copper separation efficiency(88.7%)was obtained at the dosages of 8.6 g/t SIPX,7 g/t IPETC and 20 g/t MIBC at pH 11.Finally,it was concluded that a mixture of SIPX and IPETC collectors was more suitable to treat highly clayey sulphide ores.展开更多
Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite...Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite?silica,sphalerite?silica and stibnite?silica.Pyrargyrite enhanced Au recovery to 77.3%and 51.2%under galvanic and passivation effects from pyrite(vs 74.6%and 15.8%).Pyrargyrite in association with sphalerite also enhanced Au recovery to 6.6%and 51.9%(vs 1.6%and 15.6%)under galvanic and passivation effects from sphalerite.Pyrargyrite associated with chalcopyrite retarded gold recovery to 38.0%and 12.1%(vs 57%and 14.1%)under galvanic and passivation effects.Accumulative silver minerals enhanced Au recovery to 90.6%and 81.1%(vs 74.6%and 15.8%)under galvanic and passivation impacts from pyrite.Silver minerals with sphalerite under galvanic and passivation effects enhanced Au recovery to 71.1%and 80.5%(vs 1.6%and 15.6%).Silver minerals associated with chalcopyrite retarded Au recovery to 10.2%and 4.5%under galvanic and passivation impacts(vs 57%and 14.1%).Stibnite retarded Au dissolution with pyrargyrite and accumulative silver minerals.Pyrargyrite and accumulative silver enhanced gold dissolution for free gold and gold associated with pyrite and sphalerite.Gold dissolution was retarded for gold and silver minerals associated with chalcopyrite and stibnite.展开更多
The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo- chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate ...The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo- chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate soils (ASS) at Tuckean Swamp, McLeods Creek and Bungawalbyn Swamp respectively. These properties included PH, reactive iron (FeR), pore-water sulfate (SO:42-) and organic carbon (OC). Iron monosulfide was concentrated at the oxic/anoxic boundary. The Tuckean Swamp and McLeods Creek sites are Holocene sediments, whereas the Bungawalbyn Swamp is a Holocene peat. The concentration of SAV averaged 0.2 g kg-l in a 0.5 m thick soil layer at the Tuckean Swamp, but was an order of magnitude lower in the oxic/anoxic transition layers at McLeods Creek and Bungawalbyn Swamp. The SAV mineral greigite (Fe3S4) was identified in the Tuckean Swamp by X-ray diffraction and scanning electron microscopy with quantitative energy dispersive X-ray analysis (SEM-EDX). Very small concentrations of greigite were also observed in the McLeods Creek, based on crystal morphology and elemental composition. The concentration of SAV was a small fraction of the total reduced sulfur, representing at most 3% of the Pyrite sulfur. However, the presence of this highly reactive sulfide mineral, distributed within pores where oxygen diffusion is most rapid, has important implications to the potential rate of acid production from these sediments.展开更多
文摘Flotation reagents have a complex behaviour in the beneficiation of base minerals in clayey ores.Interaction effects of reagents on the efficiency of copper flotation for a highly clayey low-grade sulphide ore were investigated using a central composite design.Preliminary results showed that sodium-isopropyl-xanthate(SIPX)and O-isopropyl-N-ethyl-thionocarbamate(IPETC)were found to be the most efficient collectors in the presence of lime as the pH regulator.The effects of dosage of collectors(SIPX and IPETC)and the dosage of methyl-isobutyl-carbonyl(MIBC)as frother on the separation efficiency were evaluated at different pH levels.Based on the analysis of variance(ANOVA),the interaction effects of the collector−pH and collector−frother were significant for the separation efficiency.At the low level of collector dosage,increasing pH from 9 to 11 enhanced copper separation efficiency from 81%to 86%for IPETC and from 77%to 86%for SIPX.Results of ANOVA showed that the maximum copper separation efficiency(88.7%)was obtained at the dosages of 8.6 g/t SIPX,7 g/t IPETC and 20 g/t MIBC at pH 11.Finally,it was concluded that a mixture of SIPX and IPETC collectors was more suitable to treat highly clayey sulphide ores.
基金Financial support from the Natural Sciences and Engineering Research Council through its Cooperative Research & Development grants program
文摘Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite?silica,sphalerite?silica and stibnite?silica.Pyrargyrite enhanced Au recovery to 77.3%and 51.2%under galvanic and passivation effects from pyrite(vs 74.6%and 15.8%).Pyrargyrite in association with sphalerite also enhanced Au recovery to 6.6%and 51.9%(vs 1.6%and 15.6%)under galvanic and passivation effects from sphalerite.Pyrargyrite associated with chalcopyrite retarded gold recovery to 38.0%and 12.1%(vs 57%and 14.1%)under galvanic and passivation effects.Accumulative silver minerals enhanced Au recovery to 90.6%and 81.1%(vs 74.6%and 15.8%)under galvanic and passivation impacts from pyrite.Silver minerals with sphalerite under galvanic and passivation effects enhanced Au recovery to 71.1%and 80.5%(vs 1.6%and 15.6%).Silver minerals associated with chalcopyrite retarded Au recovery to 10.2%and 4.5%under galvanic and passivation impacts(vs 57%and 14.1%).Stibnite retarded Au dissolution with pyrargyrite and accumulative silver minerals.Pyrargyrite and accumulative silver enhanced gold dissolution for free gold and gold associated with pyrite and sphalerite.Gold dissolution was retarded for gold and silver minerals associated with chalcopyrite and stibnite.
基金Project (No. 41004) supported by the Cooperative Research Center for Sustainable Tourism, Australia.
文摘The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo- chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate soils (ASS) at Tuckean Swamp, McLeods Creek and Bungawalbyn Swamp respectively. These properties included PH, reactive iron (FeR), pore-water sulfate (SO:42-) and organic carbon (OC). Iron monosulfide was concentrated at the oxic/anoxic boundary. The Tuckean Swamp and McLeods Creek sites are Holocene sediments, whereas the Bungawalbyn Swamp is a Holocene peat. The concentration of SAV averaged 0.2 g kg-l in a 0.5 m thick soil layer at the Tuckean Swamp, but was an order of magnitude lower in the oxic/anoxic transition layers at McLeods Creek and Bungawalbyn Swamp. The SAV mineral greigite (Fe3S4) was identified in the Tuckean Swamp by X-ray diffraction and scanning electron microscopy with quantitative energy dispersive X-ray analysis (SEM-EDX). Very small concentrations of greigite were also observed in the McLeods Creek, based on crystal morphology and elemental composition. The concentration of SAV was a small fraction of the total reduced sulfur, representing at most 3% of the Pyrite sulfur. However, the presence of this highly reactive sulfide mineral, distributed within pores where oxygen diffusion is most rapid, has important implications to the potential rate of acid production from these sediments.