The leaching results of bismuth sulfide concentrate containing molybdenum and tungsten in air-H2O2-NaOH system, pressure-O2-Na2CO3 system and pressure-O2-NaOH system were investigated. The results show that the extrac...The leaching results of bismuth sulfide concentrate containing molybdenum and tungsten in air-H2O2-NaOH system, pressure-O2-Na2CO3 system and pressure-O2-NaOH system were investigated. The results show that the extraction of molybdenum, tungsten and sulfur goes up with the increase of NaOH concentration, oxygen partial pressure and reaction time. The extraction of molybdenum and tungsten also rises up with temperature, but the leaching ratio of sulfur increases initially to a peak of 98% at 150℃ and then decreases with the increase of temperature. Under the optimal conditions, the extraction of molybdenum, tungsten and sulfur is more than 95.6%, 93.8% and 96.0%, respectively, and the main phases of residue are Bi2O3 and Fe2O3. Therefore, the method of pressure leaching in alkaline solution is provided as an effective separation of molybdenum, tungsten and sulfur from bismuth and a beneficial pretreatment for consequent process.展开更多
A Michael addition is usually taken as a base-catalysed reaction. However, our synthesized 2-(quinolin-2-ylmethylene) malonic acid (QMA) as a Michael-type thiol fluorescent probe is acid-active in its sensing reac...A Michael addition is usually taken as a base-catalysed reaction. However, our synthesized 2-(quinolin-2-ylmethylene) malonic acid (QMA) as a Michael-type thiol fluorescent probe is acid-active in its sensing reaction. In this work, based on theoretic calculation and experimental study on 7-hydroxy-2-(quinolin-2-ylmethylene) malonic acid, we demonstrated that QMA as a Michael acceptor is acid-activatable, i.e., it works only in solutions at pH〈7, and the lower the pH of solutions is, the higher reactivity QMA has. In alkaline solution, the malonate QMA[-2H+]2- cannot react with both RSand RSH. In contrast, 2-(quinolin-2- ylmethylene) malonic ester (QME), the ester of QMA, reveal a contrary pH effect on its sensing reaction, that is, it can sense thiols in alkaline solutions but not in acidic solutions, like a normal base-catalysed Michael addition. The values of activation enthalpies from theoretic calculation support the above sensing behavior of two probes under different pH conditions. In acidic solutions, the protonated QMA is more highly reactive towards electrophilic attack over its other ionized states in neutral and alkaline solutions, and so can react with lowly reactive RSH. In contrast, there is a big energy barrier in the interaction of QME with RSH (acidic solutions), and the reaction of QME with the highly reactive nucleophile RS- is a low activation energy process (in alkaline solutions). Theoretic calculation reveals that the sensing reaction of QMA undergoes a 1,4-addition process with neutral thiols (RSH), and a 1,2-addition pathway for the sensing reaction of QME with RS-. Therefore, the sensing reaction of QMA is an acid-catalysed Michael addition via a 1,4-addition, and a normal base-catalysed Michael addition via a 1,2-addition.展开更多
文摘The leaching results of bismuth sulfide concentrate containing molybdenum and tungsten in air-H2O2-NaOH system, pressure-O2-Na2CO3 system and pressure-O2-NaOH system were investigated. The results show that the extraction of molybdenum, tungsten and sulfur goes up with the increase of NaOH concentration, oxygen partial pressure and reaction time. The extraction of molybdenum and tungsten also rises up with temperature, but the leaching ratio of sulfur increases initially to a peak of 98% at 150℃ and then decreases with the increase of temperature. Under the optimal conditions, the extraction of molybdenum, tungsten and sulfur is more than 95.6%, 93.8% and 96.0%, respectively, and the main phases of residue are Bi2O3 and Fe2O3. Therefore, the method of pressure leaching in alkaline solution is provided as an effective separation of molybdenum, tungsten and sulfur from bismuth and a beneficial pretreatment for consequent process.
基金This work is supported by the National Natural Science Foundation of China (No.21272224), the Open Research Fund of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (No.201410), and the Open Research Fund of Key Laboratory of Advanced Scientific Computation, Xihua University (No.szjj2013-024).
文摘A Michael addition is usually taken as a base-catalysed reaction. However, our synthesized 2-(quinolin-2-ylmethylene) malonic acid (QMA) as a Michael-type thiol fluorescent probe is acid-active in its sensing reaction. In this work, based on theoretic calculation and experimental study on 7-hydroxy-2-(quinolin-2-ylmethylene) malonic acid, we demonstrated that QMA as a Michael acceptor is acid-activatable, i.e., it works only in solutions at pH〈7, and the lower the pH of solutions is, the higher reactivity QMA has. In alkaline solution, the malonate QMA[-2H+]2- cannot react with both RSand RSH. In contrast, 2-(quinolin-2- ylmethylene) malonic ester (QME), the ester of QMA, reveal a contrary pH effect on its sensing reaction, that is, it can sense thiols in alkaline solutions but not in acidic solutions, like a normal base-catalysed Michael addition. The values of activation enthalpies from theoretic calculation support the above sensing behavior of two probes under different pH conditions. In acidic solutions, the protonated QMA is more highly reactive towards electrophilic attack over its other ionized states in neutral and alkaline solutions, and so can react with lowly reactive RSH. In contrast, there is a big energy barrier in the interaction of QME with RSH (acidic solutions), and the reaction of QME with the highly reactive nucleophile RS- is a low activation energy process (in alkaline solutions). Theoretic calculation reveals that the sensing reaction of QMA undergoes a 1,4-addition process with neutral thiols (RSH), and a 1,2-addition pathway for the sensing reaction of QME with RS-. Therefore, the sensing reaction of QMA is an acid-catalysed Michael addition via a 1,4-addition, and a normal base-catalysed Michael addition via a 1,2-addition.