A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted a...A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.展开更多
An in-situ microanalysis of Pb isotopic compositions in sulfide minerals is carried out by using femtosecond laser-ablation multi-collector inductively coupled plasma mass spectrometry (fsLA-MC-ICP-MS). High-tempera...An in-situ microanalysis of Pb isotopic compositions in sulfide minerals is carried out by using femtosecond laser-ablation multi-collector inductively coupled plasma mass spectrometry (fsLA-MC-ICP-MS). High-temperature-activated carbon was used to filter Hg contained in the carrier gas, which reduced the Hg background signal by 48% and also lowered the detection limit of the analysis. Fractionation and mass discrimination effects existing in the ICP-MS analytical processes were corrected using an internal reference T1 in conjunction with an external reference NIST SRM 610. The proposed method was used to an- alyze the Pb isotopic compositions of chalcopyrite, pyrite, and sphalerite from the Dulong Sn-Zn-In polymetallic ore district. The results showed that in this ore district, the sulfide minerals and different grains of the same sulfide mineral show a large variation in Pb content up to 1000-fold. The studied pyrites show relatively higher Pb contents and homogeneous Pb isotopic compositions, whereas the sphalerites have low Pb contents but most variable Pb isotopic compositions. It is suggested that the large variation of Pb isotopic composition may reflect a late hydrothermal superimposition on the primary sulfide formation. In addition, radiogenic Pb accumulated by radioactive decay of trace amounts of U over time in the host minerals may also be one of the causes for the large variation range of Pb content and Pb isotopic composition of those low-Pb sphalerites. Chalcopyrite and sphalerite grains with Pb content greater than 10 ppm presented a consistent Pb isotopic distribution, whereas all the sulfide grains with Pb content greater than 100 ppm had consistent Pb isotopic composition within 2s measurement uncertainties. The in-situ analysis of Pb isotopic composition agreed well with the results obtained by conventional chemical methods within 2s measurement uncertainties, indicating that the data obtained by fsLA-MC-ICP-MS are reliable. Additionally, this study indicates that the Pb isotopic composition could truthfully record the source of ore-forming minerals only for sulfide minerals with high Pb content. On the contrary, the Pb isotopic composition of low-Pb sulfide minerals may be affected by trace amounts of U in the host minerals that may lead to a highly radiogenic Pb isotope ratio. Alternatively, it is also possible that late fluid metasomatic overprinting may alter the Pb isotopic compositions.展开更多
基金Project(50874117) supported by the National Natural Science Foundation of China
文摘A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.
基金supported by the National Natural Science Foundation of China(Grant Nos.41427804,41421002,41373004)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1281)the MOST Research Foundation from the State Key Laboratory of Continental Dynamics(Grant No.BJ08132-1)
文摘An in-situ microanalysis of Pb isotopic compositions in sulfide minerals is carried out by using femtosecond laser-ablation multi-collector inductively coupled plasma mass spectrometry (fsLA-MC-ICP-MS). High-temperature-activated carbon was used to filter Hg contained in the carrier gas, which reduced the Hg background signal by 48% and also lowered the detection limit of the analysis. Fractionation and mass discrimination effects existing in the ICP-MS analytical processes were corrected using an internal reference T1 in conjunction with an external reference NIST SRM 610. The proposed method was used to an- alyze the Pb isotopic compositions of chalcopyrite, pyrite, and sphalerite from the Dulong Sn-Zn-In polymetallic ore district. The results showed that in this ore district, the sulfide minerals and different grains of the same sulfide mineral show a large variation in Pb content up to 1000-fold. The studied pyrites show relatively higher Pb contents and homogeneous Pb isotopic compositions, whereas the sphalerites have low Pb contents but most variable Pb isotopic compositions. It is suggested that the large variation of Pb isotopic composition may reflect a late hydrothermal superimposition on the primary sulfide formation. In addition, radiogenic Pb accumulated by radioactive decay of trace amounts of U over time in the host minerals may also be one of the causes for the large variation range of Pb content and Pb isotopic composition of those low-Pb sphalerites. Chalcopyrite and sphalerite grains with Pb content greater than 10 ppm presented a consistent Pb isotopic distribution, whereas all the sulfide grains with Pb content greater than 100 ppm had consistent Pb isotopic composition within 2s measurement uncertainties. The in-situ analysis of Pb isotopic composition agreed well with the results obtained by conventional chemical methods within 2s measurement uncertainties, indicating that the data obtained by fsLA-MC-ICP-MS are reliable. Additionally, this study indicates that the Pb isotopic composition could truthfully record the source of ore-forming minerals only for sulfide minerals with high Pb content. On the contrary, the Pb isotopic composition of low-Pb sulfide minerals may be affected by trace amounts of U in the host minerals that may lead to a highly radiogenic Pb isotope ratio. Alternatively, it is also possible that late fluid metasomatic overprinting may alter the Pb isotopic compositions.