The Hartree-Fock and cluster model methods have been employed to investigate interactions of methanthiol or dimethyl sulfide on zeolites. Molecular complexes formed by adsorption of methanthiol on silanol H3SiOSi(OH...The Hartree-Fock and cluster model methods have been employed to investigate interactions of methanthiol or dimethyl sulfide on zeolites. Molecular complexes formed by adsorption of methanthiol on silanol H3SiOSi(OH)2OSiH3 with five coordination forms and dimethyl sulfide on silanol H3SiOSi(OH)2OSiH3 with four coordination forms, and Bronsted acid sites of bridging hydroxyl H3Si(OH)Al(OH)2OSiH3 entering into interactions with methanthiol or dimethyl sulfide have been investigated. Full optimization and frequency analysis of all cluster models have been carded out using the Hartree-Fock method at 6-31+G** basis set level for hydrogen, silicon, aluminum, oxygen, carbon, and sulfur atoms. The structures and energy changes of different coordination forms derived from methanthiol and H3Si(OH)Al(OH)2OSiH3, dimethyl sulfide and H3Si(OH)Al(OH)2OSiH3, methanthiol and H3SiOSi(OH)2OSiH3, dimethyl sulfide and H3SiOSi(OH)2OSiH3 complexes have been comparatively studied. The calculated results showed that the nature of interactions leading to the formation of the bridging hydroxyl-methanthiol, silanol-methanthiol, bridging hydroxyl-dimethyl sulfide, silanol-dimethyl sulfide complexes was governed by the Van der Waals force as confirmed by a small change in geometric structures and properties. Methanthiol and dimethyl sulfide molecules were adsorbed on bridging hydroxyl group prior to silanol group as evidenced by the heat of adsorption, and the protonization of methanthiol adsorption on bridging hydroxyl model, which was supposed in the literature, was not found.展开更多
Bubble formation in an opposite-flowing T-shaped microchannel with 40 μm in depth and 120 μm in width was real-time visualized and investigated experimentally by means of a high speed camera. N2 bubbles were generat...Bubble formation in an opposite-flowing T-shaped microchannel with 40 μm in depth and 120 μm in width was real-time visualized and investigated experimentally by means of a high speed camera. N2 bubbles were generated in glycerol-water mixtures with different concentrations of surfactant sodium dodecyl sulfate (SDS). And the images were captured by the high speed camera linked to a computer. Results indicated that the bubble formation process can be distinguished into three consecutive stages, i.e., expansion, collapse and pinching off. The bubble size decreases with the increase of liquid flow rate and viscosity of liquid phase as well as the decrease of gas flow rate. The surface tension of the liquid phase has no measurable influence on the bubble size. Moreover, a new approach to predicting the size of bubbles formed in the T-shaped microchannel is proposed. And the predicted values agree well with the experimental data.展开更多
The porous medium has an important effect on hydrate formation.In this paper,the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (...The porous medium has an important effect on hydrate formation.In this paper,the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (SDS) existing in the system.The results show that A-type zeolite can influence methane hydrate formation.At the temperature of 273.5 K and pressure of 8.3 MPa,the distilled water with A-type zeolite can form methane hydrate with gaseous methane in 12 hours.The formation process of the system with A-type zeolite was quite steady and the amount of A-type zeolite can influence the gas storage capacity significantly.The adding of A-type zeolite with 0.067 g·(g water)-1 into 2×10-3 g·g-1 SDS-water solution can increase the gas storage capacity,and the maximum increase rate was 31%.Simultaneously the promotion effect on hydrate formation of 3A-type zeolite is much more obvious than that of 5A-type zeolite when the water adding amounts are 0.033 g·g-1 and 0.067 g·g-1 at the experimental conditions.展开更多
Coconut-based activated carbons were modified with sodium dodecyl sulfate (SDS). The activated carbons, which were modified by different concentrations of SDS, were characterized by acid/base titrations, textural anal...Coconut-based activated carbons were modified with sodium dodecyl sulfate (SDS). The activated carbons, which were modified by different concentrations of SDS, were characterized by acid/base titrations, textural analysis (BET), atomic absorption spectrochemical analysis and Zeta potential measurements. The effects of SDS modification on Pb2+ absorption were studied further. The results indicate that after the modification of SDS, there are new functional groups on the surface of modified activated carbons and the number of functional group has changed remarkably, the total acidity decreases observably, but the total alkalinity increases dramatically. With the increase of surface load with SDS, the Pb2+ adsorption mass of activated carbons increases and the optimal pH for Pb2+ adsorption of the SDS modified activated carbons is 5. The experimental data are simulated better by Freundlich isotherm model for the modified activated carbons, and the experimental data are simulated better by Langmuir isotherm model for unmodified ones.展开更多
The complex [Et4N][(Ph3P)2{CuS2WS2Fe} Br2] (1 ), C44, H50NBr2CuFeP2S4W, M4= 1246. 13, has been obtained by reaction of [Et4N]2[WS4] andFeBr2 with Cu (Ph3P )3I in MeCN/CH2Cl2. Crystal data for [Et4N][(Ph3P)2{CuS2WS2Fe)...The complex [Et4N][(Ph3P)2{CuS2WS2Fe} Br2] (1 ), C44, H50NBr2CuFeP2S4W, M4= 1246. 13, has been obtained by reaction of [Et4N]2[WS4] andFeBr2 with Cu (Ph3P )3I in MeCN/CH2Cl2. Crystal data for [Et4N][(Ph3P)2{CuS2WS2Fe) Br2] (1): triclinic, P1, Z = 2, a= 13. 495 (7), b = 15. 322 (5), c =12. 361 (4), a=105. 32(3), β=93. 19(4), γ=101. 35(4) and V=2401. 2 The bond lengths of W-Fe bond and the W-Cu distance are 2. 793(2) A and 2. 823(2), respectively. Three kind metal atoms of the title structure [Et4N][(Ph3P)2{CuS2WS2Fe}Br2] (1) are nearly distributed along a line, and along which three metalatoms (W, Cu, Fe) are approximately tetrahedral coordination.展开更多
Mesoporous sulfonic acid catalysts(MSAC) are widely used in acid-catalyzed reactions, including biomass conversions with plenty of polar solvents and precursors. The catalytic efficiency of MSAC is greatly affected by...Mesoporous sulfonic acid catalysts(MSAC) are widely used in acid-catalyzed reactions, including biomass conversions with plenty of polar solvents and precursors. The catalytic efficiency of MSAC is greatly affected by the microenvironment around the sulfonic acid sites. In this review, the progress on modification of microenvironment of MSAC is reviewed over the past decade. Hydrophobic modification allows MSAC prevent the adhesion of water molecules onto sulfonic acid sites, to abate the risk of reduced acid strength and catalytic efficiency. In comparison, hydrophilic properties can bring positive effect on acidcatalyzed reactions with the aid of hydrophilic interaction between polar functional groups on MSAC and hydrophilic groups of specific substrates. Amphiphilic MSAC with tunable wettability for specific substrates and solvents tend to improve the efficiency in certain reactions with mixed solvents or reactants of different polarity, especially for biphasic systems of immiscible liquids. Furthermore, much attention has been attracted on modification of surface to simulate the microenvironment of homogeneous solvents and enzyme biocatalysts in recent research. New trends of this field are also highlighted.展开更多
文摘The Hartree-Fock and cluster model methods have been employed to investigate interactions of methanthiol or dimethyl sulfide on zeolites. Molecular complexes formed by adsorption of methanthiol on silanol H3SiOSi(OH)2OSiH3 with five coordination forms and dimethyl sulfide on silanol H3SiOSi(OH)2OSiH3 with four coordination forms, and Bronsted acid sites of bridging hydroxyl H3Si(OH)Al(OH)2OSiH3 entering into interactions with methanthiol or dimethyl sulfide have been investigated. Full optimization and frequency analysis of all cluster models have been carded out using the Hartree-Fock method at 6-31+G** basis set level for hydrogen, silicon, aluminum, oxygen, carbon, and sulfur atoms. The structures and energy changes of different coordination forms derived from methanthiol and H3Si(OH)Al(OH)2OSiH3, dimethyl sulfide and H3Si(OH)Al(OH)2OSiH3, methanthiol and H3SiOSi(OH)2OSiH3, dimethyl sulfide and H3SiOSi(OH)2OSiH3 complexes have been comparatively studied. The calculated results showed that the nature of interactions leading to the formation of the bridging hydroxyl-methanthiol, silanol-methanthiol, bridging hydroxyl-dimethyl sulfide, silanol-dimethyl sulfide complexes was governed by the Van der Waals force as confirmed by a small change in geometric structures and properties. Methanthiol and dimethyl sulfide molecules were adsorbed on bridging hydroxyl group prior to silanol group as evidenced by the heat of adsorption, and the protonization of methanthiol adsorption on bridging hydroxyl model, which was supposed in the literature, was not found.
基金Supported by National Natural Science Foundation of China (No. 20876107)Open Project of State Key Laboratory of Chemical Engineering (No. SKL-ChE-08B06) Program of Introducing Talents of Discipline to Universities (No. B06006)
文摘Bubble formation in an opposite-flowing T-shaped microchannel with 40 μm in depth and 120 μm in width was real-time visualized and investigated experimentally by means of a high speed camera. N2 bubbles were generated in glycerol-water mixtures with different concentrations of surfactant sodium dodecyl sulfate (SDS). And the images were captured by the high speed camera linked to a computer. Results indicated that the bubble formation process can be distinguished into three consecutive stages, i.e., expansion, collapse and pinching off. The bubble size decreases with the increase of liquid flow rate and viscosity of liquid phase as well as the decrease of gas flow rate. The surface tension of the liquid phase has no measurable influence on the bubble size. Moreover, a new approach to predicting the size of bubbles formed in the T-shaped microchannel is proposed. And the predicted values agree well with the experimental data.
基金Supported by the National Natural Science Foundation of China (50876107), the National Basic Research Program of China (2009CB219504), NSFC-Guangdong Union Foundation (NSFC-U0733033) and CAS Program (KGCX2-YW-805).
文摘The porous medium has an important effect on hydrate formation.In this paper,the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (SDS) existing in the system.The results show that A-type zeolite can influence methane hydrate formation.At the temperature of 273.5 K and pressure of 8.3 MPa,the distilled water with A-type zeolite can form methane hydrate with gaseous methane in 12 hours.The formation process of the system with A-type zeolite was quite steady and the amount of A-type zeolite can influence the gas storage capacity significantly.The adding of A-type zeolite with 0.067 g·(g water)-1 into 2×10-3 g·g-1 SDS-water solution can increase the gas storage capacity,and the maximum increase rate was 31%.Simultaneously the promotion effect on hydrate formation of 3A-type zeolite is much more obvious than that of 5A-type zeolite when the water adding amounts are 0.033 g·g-1 and 0.067 g·g-1 at the experimental conditions.
基金Project(2007AA06Z121) supported by the National High Technology Research and Development Program of ChinaProject(50774095) supported by the National Natural Science Foundation of ChinaProject(CL12111) supported by the Undergraduate Innovation Experimentation Plan of Central South University,China
文摘Coconut-based activated carbons were modified with sodium dodecyl sulfate (SDS). The activated carbons, which were modified by different concentrations of SDS, were characterized by acid/base titrations, textural analysis (BET), atomic absorption spectrochemical analysis and Zeta potential measurements. The effects of SDS modification on Pb2+ absorption were studied further. The results indicate that after the modification of SDS, there are new functional groups on the surface of modified activated carbons and the number of functional group has changed remarkably, the total acidity decreases observably, but the total alkalinity increases dramatically. With the increase of surface load with SDS, the Pb2+ adsorption mass of activated carbons increases and the optimal pH for Pb2+ adsorption of the SDS modified activated carbons is 5. The experimental data are simulated better by Freundlich isotherm model for the modified activated carbons, and the experimental data are simulated better by Langmuir isotherm model for unmodified ones.
文摘The complex [Et4N][(Ph3P)2{CuS2WS2Fe} Br2] (1 ), C44, H50NBr2CuFeP2S4W, M4= 1246. 13, has been obtained by reaction of [Et4N]2[WS4] andFeBr2 with Cu (Ph3P )3I in MeCN/CH2Cl2. Crystal data for [Et4N][(Ph3P)2{CuS2WS2Fe) Br2] (1): triclinic, P1, Z = 2, a= 13. 495 (7), b = 15. 322 (5), c =12. 361 (4), a=105. 32(3), β=93. 19(4), γ=101. 35(4) and V=2401. 2 The bond lengths of W-Fe bond and the W-Cu distance are 2. 793(2) A and 2. 823(2), respectively. Three kind metal atoms of the title structure [Et4N][(Ph3P)2{CuS2WS2Fe}Br2] (1) are nearly distributed along a line, and along which three metalatoms (W, Cu, Fe) are approximately tetrahedral coordination.
基金supported by the National Natural Science Foundation of China(21503024)the Jiangsu Province Science Foundation for Youth(BK20150264,BK20150261)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110)
文摘Mesoporous sulfonic acid catalysts(MSAC) are widely used in acid-catalyzed reactions, including biomass conversions with plenty of polar solvents and precursors. The catalytic efficiency of MSAC is greatly affected by the microenvironment around the sulfonic acid sites. In this review, the progress on modification of microenvironment of MSAC is reviewed over the past decade. Hydrophobic modification allows MSAC prevent the adhesion of water molecules onto sulfonic acid sites, to abate the risk of reduced acid strength and catalytic efficiency. In comparison, hydrophilic properties can bring positive effect on acidcatalyzed reactions with the aid of hydrophilic interaction between polar functional groups on MSAC and hydrophilic groups of specific substrates. Amphiphilic MSAC with tunable wettability for specific substrates and solvents tend to improve the efficiency in certain reactions with mixed solvents or reactants of different polarity, especially for biphasic systems of immiscible liquids. Furthermore, much attention has been attracted on modification of surface to simulate the microenvironment of homogeneous solvents and enzyme biocatalysts in recent research. New trends of this field are also highlighted.