An acid sulfate soil sample was successively extracted with deionized water, 1 mol L-1 KCl and 0.000 5 mol L-l Ca(OH)2 solutions. The results showed that only very small amounts of acidity were extracted by deionized ...An acid sulfate soil sample was successively extracted with deionized water, 1 mol L-1 KCl and 0.000 5 mol L-l Ca(OH)2 solutions. The results showed that only very small amounts of acidity were extracted by deionized water, possibly through slow jarosite hydrolysis. Acid release through jarosite hydrolysis was greatly enhanced by Ca(OH)2 extraction at the expense of the added OH- being neutralized by the acid released. Successive extraction of the sample with KCl removed the largest amounts of acidity from the sample. However, it is likely that the major form of acidity released by KCl extraction was exchangeable acidity. The results also show the occurrence of low or non charged Al and Fe species in water and Ca(OH)2 extracts after first a few extractions. It appears that such a phenomenon was related to a decreasing EC value with increasing number of extractions.展开更多
Soil potassium (K) deficiency has been increasing over recent decades as a result of higher inputs of N and P fertilizers concomitant with lower inputs of K fertilizers in China; however, the effects of interactions...Soil potassium (K) deficiency has been increasing over recent decades as a result of higher inputs of N and P fertilizers concomitant with lower inputs of K fertilizers in China; however, the effects of interactions between N, P, and K of fertilizers on K status in soils have not been thoroughly investigated for optimizing N, P, and K fertilizer use efficiency. The influence of ammonium sulfate (AS), monocMcium phosphate (MCP), and potassium chloride application on K fractions in three typical soils of China was evaluated during 90-d laboratory soil incubation. The presence of AS significantly altered the distribution of native and added K in soils, while addition of MCP did not significantly affected K equilibrium in most cases. Addition of AS significantly increased water-soluble K (WSK), decreased exchangeable K (EK) in almost all the soils except the paddy soil that contained considerable amounts of 2:1 type clay minerals with K added, retarded the formation of fixed K in the soils with K added, and suppressed the release of fixed K in the three soils without K added. These interactions might be expected to influence the K availability to plants when the soil was fertilized with AS. To improve K fertilizer use efficiency, whether combined application of AS and K was to be recommended or avoided should depend on K status of the soil, soil properties, and cropping systems.展开更多
文摘An acid sulfate soil sample was successively extracted with deionized water, 1 mol L-1 KCl and 0.000 5 mol L-l Ca(OH)2 solutions. The results showed that only very small amounts of acidity were extracted by deionized water, possibly through slow jarosite hydrolysis. Acid release through jarosite hydrolysis was greatly enhanced by Ca(OH)2 extraction at the expense of the added OH- being neutralized by the acid released. Successive extraction of the sample with KCl removed the largest amounts of acidity from the sample. However, it is likely that the major form of acidity released by KCl extraction was exchangeable acidity. The results also show the occurrence of low or non charged Al and Fe species in water and Ca(OH)2 extracts after first a few extractions. It appears that such a phenomenon was related to a decreasing EC value with increasing number of extractions.
基金Supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (No.KSCX2-YW-N-002)the National Key Basic Research Program of China(No.2007CB109301)+1 种基金the National Natural Science Foundation of China(No.40971176)the International Potash Institute China Project
文摘Soil potassium (K) deficiency has been increasing over recent decades as a result of higher inputs of N and P fertilizers concomitant with lower inputs of K fertilizers in China; however, the effects of interactions between N, P, and K of fertilizers on K status in soils have not been thoroughly investigated for optimizing N, P, and K fertilizer use efficiency. The influence of ammonium sulfate (AS), monocMcium phosphate (MCP), and potassium chloride application on K fractions in three typical soils of China was evaluated during 90-d laboratory soil incubation. The presence of AS significantly altered the distribution of native and added K in soils, while addition of MCP did not significantly affected K equilibrium in most cases. Addition of AS significantly increased water-soluble K (WSK), decreased exchangeable K (EK) in almost all the soils except the paddy soil that contained considerable amounts of 2:1 type clay minerals with K added, retarded the formation of fixed K in the soils with K added, and suppressed the release of fixed K in the three soils without K added. These interactions might be expected to influence the K availability to plants when the soil was fertilized with AS. To improve K fertilizer use efficiency, whether combined application of AS and K was to be recommended or avoided should depend on K status of the soil, soil properties, and cropping systems.