In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide c...In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.展开更多
Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study...Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study was undertaken to evaluate the effect of the physiological state of Holstein-Friesian heifers on their enteric CH4 emissions while grazing a perennial ryegrass sward. Two experiments were conducted: Experiment 1 ran from May 2011 for 11 weeks and Experiment 2 ran from August 2011 for 10 weeks. In each experiment, Holstein-Friesian heifers were divided into three treatment groups (12 animals/group) consisting of calves, yearling heifers, and in-calf heifers (average ages: 8.5, 14.5, and 20.5 months, respectively). Methane emissions were estimated for each animal in the final week of each experiment using the sulfur hexafluoride tracer technique. Dry matter (DM) intake was estimated using the calculated metabolizable energy (ME) requirement divided by the ME concentration in the grazed grass. As expected, live weight increased with increasing animal age (P 〈 0.001); however, there was no difference in live weight gain among the three groups in Experiment 1, although in Experiment 2, this variable decreased with increasing animal age (P 〈 0.001 ). In Experiment 1, yearling heifers had the highest CH4 emissions (g·d^-1) and in-calf heifers produced more than calves (P 〈 0.001 ). When expressed as CH4 emissions per unit of live weight, DM intake, and gross energy (GE) intake, yearling heifers had higher emission rates than calves and in-calf heifers (P 〈 0.001). However, the effects on CH4 emissions were different in Experiment 2, in which CH, emissions (g·d^-1) increased linearly with increasing animal age (P 〈 0.001), although the difference between yearling and in-calf heifers was not significant. The CH4/live weight ratio was lower in in-calf heifers than in the other two groups (P 〈 0.001 ), while CH4 energy output as a proportion of GE intake was lower in calves than in yearling and in-calf heifers (P 〈 0.05). All data were then pooled and used to develop prediction equations for CH4 emissions. All relationships are significant (P 〈 0.001), with R2 values ranging from 0.630 to 0.682. These models indicate that CH4 emissions could be increased by 0.252 g.d-1 with an increase of I kg live weight or by 14.9 g·d^-1 with an increase of 1 kg·d^-1 of DM intake; or, the CH4 energy output could be increased by 0.046 MJ·d^-1 with an increase of 1 MJ·d^-1 of GE intake. These results provide an alternative approach for estimating CH4 emissions from grazine dairy heifers when actual CH, emission data are not available.展开更多
The effects of high hydrostatic pressure (HHP) treatment on sea cucumber qualities, such as shelf-life, autoenzyme, total volatile basic nitrogen (TVB-N), mucopolysaccha ride and protein, were investigated experim...The effects of high hydrostatic pressure (HHP) treatment on sea cucumber qualities, such as shelf-life, autoenzyme, total volatile basic nitrogen (TVB-N), mucopolysaccha ride and protein, were investigated experimentally. The shelf-life of sea cucumber was greatly prolonged by HHP treatment. High pressure treatment of sea cucumber significantly reduced the activity of autoenzyme at 550 MPa. The TVB-N content was 8.4 mg/100 g in the HHP-treated samples after 38 days' storage at 4 ~C, while it had already reached 11.2 mg/100 g in the untreated ones after 5 days' storage under the same condition. The relative mucopolysaccharide content of the HHP-treated samples was 94.3%, while that of the heat-treated ones was only 35.5%. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Differential scanning calorimetric (DSC), ANS fluorescence probe method and fourier-transform infrared (FTIR) spectroscopy results indicated some changes in protein subunits, denaturation, surface hydrophobicity and secondary structure of sea cucumber protein. This study has provided complementary information of pressure-induced structural changes on both the molecular and the sub-molecular level of sea cucumber protein.展开更多
Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their d...Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+).展开更多
Ionic liquid 1-methyl-3-(3-sulfopropyl) -imidazolium hydrogen sulfate([C3SO3HMIM][HSO4]) was synthesized and characterized by infrared spectroscopy(IR) ,nuclear magnetic resonance(1H and 13C NMR) and ultraviolet-visib...Ionic liquid 1-methyl-3-(3-sulfopropyl) -imidazolium hydrogen sulfate([C3SO3HMIM][HSO4]) was synthesized and characterized by infrared spectroscopy(IR) ,nuclear magnetic resonance(1H and 13C NMR) and ultraviolet-visible(UV-Vis) spectra. Its thermal stability was also examined by thermogravimetric analysis(TGA) and a differential scanning calorimeter(DSC) . The mole fraction solubilities of [C3SO3HMIM][HSO4]) in 12 selected solvents(n-pentane,n-hexane,n-heptane,benzene,toluene,ethylbenzene,acetone,2-butanone,3-methyl-2-butanone,tetrahydrofuran,ethyl acetate and dichloromethane) in the temperature range from 289.15 to 363.15 K were meas-ured using a static analytical method and correlated with an empirical equation.展开更多
基金Project (2006BAK04B03) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject (kjdb200902-7) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, China+1 种基金Project (1960-71131100023) supported by Postgraduate Dissertation Innovation Foundation of Central South University, ChinaProject (ZKJ2009008) supported by Precious Apparatus Opening Center Foundation of Central South University, China
文摘In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.
基金funded by the Department for Environment Food & Rural Affairsthe Scottish Government+2 种基金the Department of Agriculture and Rural Development for Northern Irelandthe Welsh Government as part of the UK’s Agricultural GHG Research Platform initiative
文摘Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study was undertaken to evaluate the effect of the physiological state of Holstein-Friesian heifers on their enteric CH4 emissions while grazing a perennial ryegrass sward. Two experiments were conducted: Experiment 1 ran from May 2011 for 11 weeks and Experiment 2 ran from August 2011 for 10 weeks. In each experiment, Holstein-Friesian heifers were divided into three treatment groups (12 animals/group) consisting of calves, yearling heifers, and in-calf heifers (average ages: 8.5, 14.5, and 20.5 months, respectively). Methane emissions were estimated for each animal in the final week of each experiment using the sulfur hexafluoride tracer technique. Dry matter (DM) intake was estimated using the calculated metabolizable energy (ME) requirement divided by the ME concentration in the grazed grass. As expected, live weight increased with increasing animal age (P 〈 0.001); however, there was no difference in live weight gain among the three groups in Experiment 1, although in Experiment 2, this variable decreased with increasing animal age (P 〈 0.001 ). In Experiment 1, yearling heifers had the highest CH4 emissions (g·d^-1) and in-calf heifers produced more than calves (P 〈 0.001 ). When expressed as CH4 emissions per unit of live weight, DM intake, and gross energy (GE) intake, yearling heifers had higher emission rates than calves and in-calf heifers (P 〈 0.001). However, the effects on CH4 emissions were different in Experiment 2, in which CH, emissions (g·d^-1) increased linearly with increasing animal age (P 〈 0.001), although the difference between yearling and in-calf heifers was not significant. The CH4/live weight ratio was lower in in-calf heifers than in the other two groups (P 〈 0.001 ), while CH4 energy output as a proportion of GE intake was lower in calves than in yearling and in-calf heifers (P 〈 0.05). All data were then pooled and used to develop prediction equations for CH4 emissions. All relationships are significant (P 〈 0.001), with R2 values ranging from 0.630 to 0.682. These models indicate that CH4 emissions could be increased by 0.252 g.d-1 with an increase of I kg live weight or by 14.9 g·d^-1 with an increase of 1 kg·d^-1 of DM intake; or, the CH4 energy output could be increased by 0.046 MJ·d^-1 with an increase of 1 MJ·d^-1 of GE intake. These results provide an alternative approach for estimating CH4 emissions from grazine dairy heifers when actual CH, emission data are not available.
文摘The effects of high hydrostatic pressure (HHP) treatment on sea cucumber qualities, such as shelf-life, autoenzyme, total volatile basic nitrogen (TVB-N), mucopolysaccha ride and protein, were investigated experimentally. The shelf-life of sea cucumber was greatly prolonged by HHP treatment. High pressure treatment of sea cucumber significantly reduced the activity of autoenzyme at 550 MPa. The TVB-N content was 8.4 mg/100 g in the HHP-treated samples after 38 days' storage at 4 ~C, while it had already reached 11.2 mg/100 g in the untreated ones after 5 days' storage under the same condition. The relative mucopolysaccharide content of the HHP-treated samples was 94.3%, while that of the heat-treated ones was only 35.5%. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Differential scanning calorimetric (DSC), ANS fluorescence probe method and fourier-transform infrared (FTIR) spectroscopy results indicated some changes in protein subunits, denaturation, surface hydrophobicity and secondary structure of sea cucumber protein. This study has provided complementary information of pressure-induced structural changes on both the molecular and the sub-molecular level of sea cucumber protein.
基金Projects(61533021,61321003,61273185)supported by the National Natural Science Foundation of ChinaProject(2015CX007)supported by the Innovation-driven Plan in Central South University,ChinaProject(13JJ8003)supported by the Joint Fund of Hunan Provincial Natural Science Foundation of China
文摘Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+).
文摘Ionic liquid 1-methyl-3-(3-sulfopropyl) -imidazolium hydrogen sulfate([C3SO3HMIM][HSO4]) was synthesized and characterized by infrared spectroscopy(IR) ,nuclear magnetic resonance(1H and 13C NMR) and ultraviolet-visible(UV-Vis) spectra. Its thermal stability was also examined by thermogravimetric analysis(TGA) and a differential scanning calorimeter(DSC) . The mole fraction solubilities of [C3SO3HMIM][HSO4]) in 12 selected solvents(n-pentane,n-hexane,n-heptane,benzene,toluene,ethylbenzene,acetone,2-butanone,3-methyl-2-butanone,tetrahydrofuran,ethyl acetate and dichloromethane) in the temperature range from 289.15 to 363.15 K were meas-ured using a static analytical method and correlated with an empirical equation.