期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
微生物硫循环网络的研究进展 被引量:8
1
作者 张宏 李颖杰 +1 位作者 王文颖 王禄山 《微生物学报》 CAS CSCD 北大核心 2021年第6期1567-1581,共15页
硫元素是所有生物的基本组成成分,是生物体必需的营养元素之一。硫氧化还原微生物的数量多、分布广、代谢途径多样化,硫化合物之间的平衡依赖于微生物代谢网络中的各种硫转化反应与代谢过程。此外,硫循环与碳、氮循环紧密相关,对地球生... 硫元素是所有生物的基本组成成分,是生物体必需的营养元素之一。硫氧化还原微生物的数量多、分布广、代谢途径多样化,硫化合物之间的平衡依赖于微生物代谢网络中的各种硫转化反应与代谢过程。此外,硫循环与碳、氮循环紧密相关,对地球生态循环起到了至关重要的作用。本文综述了近期微生物硫循环网络的研究进展,包括所涉及的主要微生物、硫循环的生物化学途径、硫循环的环境意义和工业应用潜能等,深入了解自然和人工生态系统中存在的硫循环过程,可为控制工农业生产中硫元素的增减与利用提供理论基础与应用方案。 展开更多
关键词 代谢 氧化微生物 硫还原微生物 循环网络 代谢相关酶
原文传递
Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau
2
作者 Zorigto B.NAMSARAEV Svetlana V.ZAITSEVA +2 位作者 Vladimir M.GORLENKO Ludmila P.KOZYREVA Bair B.NAMSARAEV 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第6期1391-1401,共11页
A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30~C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkalin... A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30~C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity, pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L.d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L·d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L·d), while that of methanogenesis was 75.6 μL CH4/(L·d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis. 展开更多
关键词 alkaline lakes microbial mats Mongolian plateau biogeochemical cycles
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部