The solubility of natural hemimorphite in ammonium sulfate solution was measured by isothermal solution method at 25 °C and the dissolved residue of hemimorphite was investigated by X-ray powder diffraction (XRD...The solubility of natural hemimorphite in ammonium sulfate solution was measured by isothermal solution method at 25 °C and the dissolved residue of hemimorphite was investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) methods. The results show that zinc and silica in hemimorphite simultaneously dissolve in ammonium sulfate solution. The solubility of zinc in solution increases rapidly from 4.5381 mmol/kg in 0.5469 mol/kg ammonium sulfate solution to 11.5083 mmol/kg in 3.7038 mol/kg ammonium sulfate solution. The solubility of silica in solution increases slowly from 2.5509 mmol/kg in 0.5469 mol/kg ammonium sulfate solution to 7.2891 mmol/kg in 3.7038 mol/kg ammonium sulfate solution. The dissolved residue is the characteristic of hemimorphite Zn4Si2O7(OH)2·H2O based on the results of the XRD, SEM and FTIR. Thus, no phase transition occurs in the dissolution process of hemimorphite in ammonium sulfate solution.展开更多
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t...The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.展开更多
The electrochemical behaviors of Ta in tetrabutylammonium hydrogen sulfate(TBAHS) ethanol solutions were studied using potentiodynamic polarization,cyclic voltammetry,potentiostatic current time transient and impeda...The electrochemical behaviors of Ta in tetrabutylammonium hydrogen sulfate(TBAHS) ethanol solutions were studied using potentiodynamic polarization,cyclic voltammetry,potentiostatic current time transient and impedance techniques.The results revealed that no active-passive transition is presented in the cyclic voltammogram,and the anodic current density increases with the increase of solution temperature,TBAHS concentration,potential scan rate and water content.The apparent activation energy is about 43.389 kJ/mol and the dissolution process is diffusion-controlled.Potentiostatic measurements showed that the current density gradually decays to a steady value when the potential is low;however,when the potential is higher than a certain value,the current density initially declines to a minimum value and then increases gradually.The resistance of passive film decreases with increasing potential,and inductive loops are presented when the potential is higher than 2.0 V.展开更多
Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-...Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-80 specifications:35mL/L 85% H3PO4+20g/L CrO3 at 38℃.Influence of oxalic acid concentration,bath temperature and anodic current density on dissolution rate and coating ratio was examined,when the sulphuric acid concentration was maintained at 160g/L.It was found that chemically resistant and compact oxide layers were produced under low operational temperature (5℃) and high current densities (3A/dm^2).A beneficial effect was observed concerning the addition of oxalic acid (18g/L).The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM),atomic force microscopy (AFM) and glow-discharge optical emission spectroscopy (GDOES).展开更多
[ Objective] The study aimed to explore the effects of magnetic treatment on the quality of chicken semen stored at low temperature. [ Method] 5 ml fresh chicken semen was divided into five groups equally, each of whi...[ Objective] The study aimed to explore the effects of magnetic treatment on the quality of chicken semen stored at low temperature. [ Method] 5 ml fresh chicken semen was divided into five groups equally, each of which was diluted at the volume ratio 1:4. With the group without magnetic treatment as the control, the other four groups were magnetized for 6, 12, 24 and 48 min in the self-made magnetizer, respectively. Subsequently, all the five groups were stored at 2 -4 ℃, and the sperm motility, survival time, survival index and deformity rate were observed regularly. [ Result] Comparing with the control group, the magnetic groups showed higher sperm motilities and effective survival indices as well as lower deformity rates. The effective survival index of the group magnetized for 24 min was the highest and increased by 7.75% in con- trast to the control. [ Conclusion] Magnetic treatment can effectively enhance the quality of chicken semen stored at low temperature.展开更多
A systematic and green low-temperature sulfation roasting−water leaching strategy was put forward to achieve a very high fluorine removal rate of 97.82%for spent carbon cathode(SCC),which was believed as a hazardous s...A systematic and green low-temperature sulfation roasting−water leaching strategy was put forward to achieve a very high fluorine removal rate of 97.82%for spent carbon cathode(SCC),which was believed as a hazardous solid waste.And the carbon could be recycled with a purity of 90.29 wt.%in the flaky microstructure.Thermodynamic analysis and the results of SEM,XRD and EDS indicate that most of the fluoride could convert into water-soluble sulfate at low temperature.And the highest fluorine removal rate could be obtained when<0.15 mm SCC particles were mixed with sulfuric acid at a liquid-to-solid ratio of 1:1,and then roasted at 300℃ for 0.5 h.The sulfate was removed to purify the carbon via water-leaching process.Avrami exponents and corresponding activation energy for the roasting and leaching process demonstrated that both processes are controlled by diffusion.展开更多
The kinetics for hydrogen(H)adsorption on Ir(111)electrode has been studied in both HClO_(4) and H_(2)SO_(4) solutions by impedance spectroscopy.In HClO_(4),the adsorption rate for H adsorption on Ir(111)increases fro...The kinetics for hydrogen(H)adsorption on Ir(111)electrode has been studied in both HClO_(4) and H_(2)SO_(4) solutions by impedance spectroscopy.In HClO_(4),the adsorption rate for H adsorption on Ir(111)increases from 1.74×10^(-8)mol·cm^(-2)·s^(-1) to 3.47×10^(-7)mol·cm^(-2)·s^(-1) with the decrease of the applied potential from 0.2 V to 0.1 V(vs.RHE),which is ca.one to two orders of magnitude slower than that on Pt(111)under otherwise identical condition.This is explained by the stronger binding of water to Ir(111),which needs a higher barrier to reorient during the under potential deposition of H from hydronium within the hydrogen bonded water network.In H_(2)SO_(4),the adsorption potential is ca.200 mV negatively shifted,accompanied by a decrease of adsorption rate by up to one order of magnitude,which is explained by the hindrance of the strongly adsorbed sulfate/bisulfate on Ir(111).Our results demonstrate that under electrochemical environment,H adsorption is strongly affected by the accompanying displacement and reorientation of water molecules that initially stay close to the electrode surface.展开更多
A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous a...A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg 2SO 4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.展开更多
Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their d...Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+).展开更多
The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that ...The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.展开更多
An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process...An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process was investigated using cyclic voltammetry, linear scanning voltammetry, environmental scanning electron microscopy and X-ray diffraction analysis. The results show that Pb F2 and PbSO4 are formed near the potential of Pb/PbSO4 couple. The pre-treatment in fluoride-containing H2SO4 solution contributes to the formation of a thick, compact and adherent passive film. Furthermore, pre-treatment in fluoride-containing H2SO4 solution also facilitates the formation of PbO2 on the anodic layer, and the reason could be attributed to the formation of more PbF2 and PbSO4 during the pre-treatment which tend to transform to PbO2 during the following electrowinning process. In addition, the anodic layer on anode with pre-treatment in fluoride-containing H2SO4 solution is thick and compact, and its predominant composition is β-PbO2. In summary, the pre-treatment in fluoride-containing H2SO4 solution benefits the formation of a desirable protective layer in a short time.展开更多
The effect of L-cysteine in different concentrations on the bioleaching of Ni-Cu sulfide was studied with an extremely thermophilic archaea,Acidianus manzaensis. It is found that adding certain amounts of L-cysteine t...The effect of L-cysteine in different concentrations on the bioleaching of Ni-Cu sulfide was studied with an extremely thermophilic archaea,Acidianus manzaensis. It is found that adding certain amounts of L-cysteine to the bioleaching system of Ni-Cu sulfide largely enhances the leaching rate. X-ray diffraction (XRD) patterns show the change of bioleached solid residues and the effect of L-cysteine on the surface charges of minerals. Zeta potential and IR spectra of mineral surface show that the interaction between L-cysteine and mineral leads to the formation of metal complex,which is propitious to the bioleaching of Ni-Cu sulfide by Acidianus manzaensis.展开更多
Despite the advances of aqueous zinc(Zn)batteries as sustainable energy storage systems,their practical application remains challenging due to the issues of spontaneous corrosion and dendritic deposits at the Zn metal...Despite the advances of aqueous zinc(Zn)batteries as sustainable energy storage systems,their practical application remains challenging due to the issues of spontaneous corrosion and dendritic deposits at the Zn metal anode.In this work,conformal growth of zinc hydroxide sulfate(ZHS)with dominating(001)facet was realized on(002)plane-dominated Zn metal foil fabricated through a facile thermal annealing process.The ZHS possessed high Zn^(2+)conductivity(16.9 mS cm^(-1))and low electronic conductivity(1.28×10^(4)Ωcm),and acted as a heterogeneous and robust solid electrolyte interface(SEI)layer on metallic Zn electrode,which regulated the electrochemical Zn plating behavior and suppressed side reactions simultaneously.Moreover,low self-diffusion barrier along the(002)plane promoted the 2D diffusion and horizontal electrochemical plating of metallic Zn for(002)-textured Zn electrode.Consequently,the as-achieved Zn electrode exhibited remarkable cycling stability over 7000 cycles at 2 mA cm^(-2)and 0.5 mAh cm^(-2)with a low overpotential of 25 mV in symmetric cells.Pairing with a MnO_(2)cathode,the as-achieved Zn electrode achieved stable cell cycling with 92.7%capacity retention after 1000 cycles at 10 C with a remarkable average Coulombic efficiency of 99.9%.展开更多
Low volumetric energy density is a bottleneck for the application of lithium-sulfur (Li-S)battery.The low- density sulfur cooperated with the light-weight carbon sub- strate realizes electrochemical cycle stability,bu...Low volumetric energy density is a bottleneck for the application of lithium-sulfur (Li-S)battery.The low- density sulfur cooperated with the light-weight carbon sub- strate realizes electrochemical cycle stability,but leads to worse volumetric energy density.Here,nickel ferrite (NiFe2O4)nanofibers as novel substrate for sulfur not only anchor lithium polysulfides to enhance the cycle stability of sulfur cathode,but also contribute to the high volumetric capacity of the S/nickel ferrite composite.Specifically,the S/ nickel ferrite composite presents an initial volumetric capacity of 1,281.7mA h cm^-3-composite at 0.1C rate,1.9times higher than that of S/carbon nanotubes,due to the high tap density of the S/nickel ferrite composite.展开更多
A sub-picomole level topotecan hydrochloride determination method was first proposed using sodium dodecyl sulfate (SDS) as a sensitized reagent at a novel disposable electrode (an improved wax-impregnated graphite ele...A sub-picomole level topotecan hydrochloride determination method was first proposed using sodium dodecyl sulfate (SDS) as a sensitized reagent at a novel disposable electrode (an improved wax-impregnated graphite electrode).The effects of different kinds of surfactants on the electrochemical response to topotecan hydrochloride were examined.The results indicate the electrochemical signal was apparently improved by SDS.At optimal conditions,the oxidative peak current increased linearly with the logarithm of concentrations for topotecan hydrochloride in the ranges of 2.0 × 10-12 to 1.0 × 10-11 mol/L and 8.0 × 10-11 to 8.0 × 10-10 mol/L with a detection limit of 6.4 × 10-13 mol/L.The proposed method could be applied in determining topotecan hydrochloride in urine.展开更多
The electrochemical behavior of ortho-phenylphenol (OPP) at a disposable electrode (an improved wax-impregnated graphite electrode) in the presence of sodium dodecyl sulfate (SDS) was studied for the first time....The electrochemical behavior of ortho-phenylphenol (OPP) at a disposable electrode (an improved wax-impregnated graphite electrode) in the presence of sodium dodecyl sulfate (SDS) was studied for the first time. The results demonstrated that the electrocatalytic oxidation process of OPP was accompanied with two-charge-two-proton transference. The electronic transmission coefficient (a) and diffusion coefficient (DR) for OPP were calculated to be 0.8126 and 3.61× 10^-2 cm2/s, respectively. The electrochemical signal was apparently improved by SDS at the disposable electrode and the oxidative peaks current was proportional to the concentration of OPP over the range from 1.0 ×10^-9 to 4.0 × 10^-6 mol/L with the detection limit of 8.7× 10^-10 mol/L. This novel and highly sensitive method can be successfully applied to detect OPP in the orange rind sample.展开更多
基金Foundation item:Project(2007CB613601)supported by the National Basic Research and Development Program of ChinaProject(511340071)supported by the National Natural Science Foundation of China
文摘The solubility of natural hemimorphite in ammonium sulfate solution was measured by isothermal solution method at 25 °C and the dissolved residue of hemimorphite was investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) methods. The results show that zinc and silica in hemimorphite simultaneously dissolve in ammonium sulfate solution. The solubility of zinc in solution increases rapidly from 4.5381 mmol/kg in 0.5469 mol/kg ammonium sulfate solution to 11.5083 mmol/kg in 3.7038 mol/kg ammonium sulfate solution. The solubility of silica in solution increases slowly from 2.5509 mmol/kg in 0.5469 mol/kg ammonium sulfate solution to 7.2891 mmol/kg in 3.7038 mol/kg ammonium sulfate solution. The dissolved residue is the characteristic of hemimorphite Zn4Si2O7(OH)2·H2O based on the results of the XRD, SEM and FTIR. Thus, no phase transition occurs in the dissolution process of hemimorphite in ammonium sulfate solution.
基金Project (SBZDPY-11-17) supported by the Fund on Key Laboratory Project for Hydrodynamic Force, Ministry of Education, China Project (SZD0502-09-0) supported by Key Disciplines of Materials Processing Engineering of Sichuan Province, China
文摘The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.
基金Project(2007AA03Z425)supported by the Hi-tech Research and Development Program of ChinaProject(50404011)supported by the National Natural Science Foundation of China
文摘The electrochemical behaviors of Ta in tetrabutylammonium hydrogen sulfate(TBAHS) ethanol solutions were studied using potentiodynamic polarization,cyclic voltammetry,potentiostatic current time transient and impedance techniques.The results revealed that no active-passive transition is presented in the cyclic voltammogram,and the anodic current density increases with the increase of solution temperature,TBAHS concentration,potential scan rate and water content.The apparent activation energy is about 43.389 kJ/mol and the dissolution process is diffusion-controlled.Potentiostatic measurements showed that the current density gradually decays to a steady value when the potential is low;however,when the potential is higher than a certain value,the current density initially declines to a minimum value and then increases gradually.The resistance of passive film decreases with increasing potential,and inductive loops are presented when the potential is higher than 2.0 V.
文摘Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-80 specifications:35mL/L 85% H3PO4+20g/L CrO3 at 38℃.Influence of oxalic acid concentration,bath temperature and anodic current density on dissolution rate and coating ratio was examined,when the sulphuric acid concentration was maintained at 160g/L.It was found that chemically resistant and compact oxide layers were produced under low operational temperature (5℃) and high current densities (3A/dm^2).A beneficial effect was observed concerning the addition of oxalic acid (18g/L).The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM),atomic force microscopy (AFM) and glow-discharge optical emission spectroscopy (GDOES).
文摘[ Objective] The study aimed to explore the effects of magnetic treatment on the quality of chicken semen stored at low temperature. [ Method] 5 ml fresh chicken semen was divided into five groups equally, each of which was diluted at the volume ratio 1:4. With the group without magnetic treatment as the control, the other four groups were magnetized for 6, 12, 24 and 48 min in the self-made magnetizer, respectively. Subsequently, all the five groups were stored at 2 -4 ℃, and the sperm motility, survival time, survival index and deformity rate were observed regularly. [ Result] Comparing with the control group, the magnetic groups showed higher sperm motilities and effective survival indices as well as lower deformity rates. The effective survival index of the group magnetized for 24 min was the highest and increased by 7.75% in con- trast to the control. [ Conclusion] Magnetic treatment can effectively enhance the quality of chicken semen stored at low temperature.
基金the Natural Science Foundation of Hunan Province,China(No.2020JJ1007).
文摘A systematic and green low-temperature sulfation roasting−water leaching strategy was put forward to achieve a very high fluorine removal rate of 97.82%for spent carbon cathode(SCC),which was believed as a hazardous solid waste.And the carbon could be recycled with a purity of 90.29 wt.%in the flaky microstructure.Thermodynamic analysis and the results of SEM,XRD and EDS indicate that most of the fluoride could convert into water-soluble sulfate at low temperature.And the highest fluorine removal rate could be obtained when<0.15 mm SCC particles were mixed with sulfuric acid at a liquid-to-solid ratio of 1:1,and then roasted at 300℃ for 0.5 h.The sulfate was removed to purify the carbon via water-leaching process.Avrami exponents and corresponding activation energy for the roasting and leaching process demonstrated that both processes are controlled by diffusion.
基金supported by the National Natural Science Foundation of China(No.91545124,No.21972131,No.21832004).
文摘The kinetics for hydrogen(H)adsorption on Ir(111)electrode has been studied in both HClO_(4) and H_(2)SO_(4) solutions by impedance spectroscopy.In HClO_(4),the adsorption rate for H adsorption on Ir(111)increases from 1.74×10^(-8)mol·cm^(-2)·s^(-1) to 3.47×10^(-7)mol·cm^(-2)·s^(-1) with the decrease of the applied potential from 0.2 V to 0.1 V(vs.RHE),which is ca.one to two orders of magnitude slower than that on Pt(111)under otherwise identical condition.This is explained by the stronger binding of water to Ir(111),which needs a higher barrier to reorient during the under potential deposition of H from hydronium within the hydrogen bonded water network.In H_(2)SO_(4),the adsorption potential is ca.200 mV negatively shifted,accompanied by a decrease of adsorption rate by up to one order of magnitude,which is explained by the hindrance of the strongly adsorbed sulfate/bisulfate on Ir(111).Our results demonstrate that under electrochemical environment,H adsorption is strongly affected by the accompanying displacement and reorientation of water molecules that initially stay close to the electrode surface.
文摘A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg 2SO 4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.
基金Projects(61533021,61321003,61273185)supported by the National Natural Science Foundation of ChinaProject(2015CX007)supported by the Innovation-driven Plan in Central South University,ChinaProject(13JJ8003)supported by the Joint Fund of Hunan Provincial Natural Science Foundation of China
文摘Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+).
基金supported by the National Natural Science Foundation of China(No.21872132 and No.21832004)973 Program from the Ministry of Science and Technology of China(No.201503932301)
文摘The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.
基金Projects(51204208,51374240)supported by the National Natural Science Foundation of ChinaProject(2014zzts028)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘An attempt was made to build up a thick and compact oxide layer rapidly by pre-treating the Pb-Ag-Nd anode in fluoride-containing H2SO4 solution. The passivation reaction of Pb-Ag-Nd anode during pre-treatment process was investigated using cyclic voltammetry, linear scanning voltammetry, environmental scanning electron microscopy and X-ray diffraction analysis. The results show that Pb F2 and PbSO4 are formed near the potential of Pb/PbSO4 couple. The pre-treatment in fluoride-containing H2SO4 solution contributes to the formation of a thick, compact and adherent passive film. Furthermore, pre-treatment in fluoride-containing H2SO4 solution also facilitates the formation of PbO2 on the anodic layer, and the reason could be attributed to the formation of more PbF2 and PbSO4 during the pre-treatment which tend to transform to PbO2 during the following electrowinning process. In addition, the anodic layer on anode with pre-treatment in fluoride-containing H2SO4 solution is thick and compact, and its predominant composition is β-PbO2. In summary, the pre-treatment in fluoride-containing H2SO4 solution benefits the formation of a desirable protective layer in a short time.
基金Projects(50621063, 30400010) supported by the National Natural Science Foundation of ChinaProject(2010CB630903) supported by the National Basic Research Program of China
文摘The effect of L-cysteine in different concentrations on the bioleaching of Ni-Cu sulfide was studied with an extremely thermophilic archaea,Acidianus manzaensis. It is found that adding certain amounts of L-cysteine to the bioleaching system of Ni-Cu sulfide largely enhances the leaching rate. X-ray diffraction (XRD) patterns show the change of bioleached solid residues and the effect of L-cysteine on the surface charges of minerals. Zeta potential and IR spectra of mineral surface show that the interaction between L-cysteine and mineral leads to the formation of metal complex,which is propitious to the bioleaching of Ni-Cu sulfide by Acidianus manzaensis.
基金financial support by the Innovation Fund of Wuhan National Laboratory for Optoelectronics of Huazhong University of Science and Technologythe China Postdoctoral Science Foundation (2018M640694 and 2020T130223)+1 种基金support of the Singapore National Research Foundation (NRF-NRFF2017-04)Agency for Science, Technology and Research (Central Research Fund Award)
文摘Despite the advances of aqueous zinc(Zn)batteries as sustainable energy storage systems,their practical application remains challenging due to the issues of spontaneous corrosion and dendritic deposits at the Zn metal anode.In this work,conformal growth of zinc hydroxide sulfate(ZHS)with dominating(001)facet was realized on(002)plane-dominated Zn metal foil fabricated through a facile thermal annealing process.The ZHS possessed high Zn^(2+)conductivity(16.9 mS cm^(-1))and low electronic conductivity(1.28×10^(4)Ωcm),and acted as a heterogeneous and robust solid electrolyte interface(SEI)layer on metallic Zn electrode,which regulated the electrochemical Zn plating behavior and suppressed side reactions simultaneously.Moreover,low self-diffusion barrier along the(002)plane promoted the 2D diffusion and horizontal electrochemical plating of metallic Zn for(002)-textured Zn electrode.Consequently,the as-achieved Zn electrode exhibited remarkable cycling stability over 7000 cycles at 2 mA cm^(-2)and 0.5 mAh cm^(-2)with a low overpotential of 25 mV in symmetric cells.Pairing with a MnO_(2)cathode,the as-achieved Zn electrode achieved stable cell cycling with 92.7%capacity retention after 1000 cycles at 10 C with a remarkable average Coulombic efficiency of 99.9%.
基金supported by the New Energy Project for Electric Vehicles in National Key Research and Development Program (2016YFB0100200)the National Natural Science Foundation of China (21573114 and 51502145)
文摘Low volumetric energy density is a bottleneck for the application of lithium-sulfur (Li-S)battery.The low- density sulfur cooperated with the light-weight carbon sub- strate realizes electrochemical cycle stability,but leads to worse volumetric energy density.Here,nickel ferrite (NiFe2O4)nanofibers as novel substrate for sulfur not only anchor lithium polysulfides to enhance the cycle stability of sulfur cathode,but also contribute to the high volumetric capacity of the S/nickel ferrite composite.Specifically,the S/ nickel ferrite composite presents an initial volumetric capacity of 1,281.7mA h cm^-3-composite at 0.1C rate,1.9times higher than that of S/carbon nanotubes,due to the high tap density of the S/nickel ferrite composite.
基金supported by the National Natural Science Foundation of China (20675071, 20705030 & 20875081)the Natural Science Foundation of Yancheng Institute of Technology (XKY2009009)
文摘A sub-picomole level topotecan hydrochloride determination method was first proposed using sodium dodecyl sulfate (SDS) as a sensitized reagent at a novel disposable electrode (an improved wax-impregnated graphite electrode).The effects of different kinds of surfactants on the electrochemical response to topotecan hydrochloride were examined.The results indicate the electrochemical signal was apparently improved by SDS.At optimal conditions,the oxidative peak current increased linearly with the logarithm of concentrations for topotecan hydrochloride in the ranges of 2.0 × 10-12 to 1.0 × 10-11 mol/L and 8.0 × 10-11 to 8.0 × 10-10 mol/L with a detection limit of 6.4 × 10-13 mol/L.The proposed method could be applied in determining topotecan hydrochloride in urine.
基金support from the National Natural Science Foundation of China (20705030, 20875081, 21075107 & 21005070)the National High Technology Research and Development Program of China (2009AA03Z331)the Natural Science Foundation of Yancheng Institute of Technology (XKY-2009009)
文摘The electrochemical behavior of ortho-phenylphenol (OPP) at a disposable electrode (an improved wax-impregnated graphite electrode) in the presence of sodium dodecyl sulfate (SDS) was studied for the first time. The results demonstrated that the electrocatalytic oxidation process of OPP was accompanied with two-charge-two-proton transference. The electronic transmission coefficient (a) and diffusion coefficient (DR) for OPP were calculated to be 0.8126 and 3.61× 10^-2 cm2/s, respectively. The electrochemical signal was apparently improved by SDS at the disposable electrode and the oxidative peaks current was proportional to the concentration of OPP over the range from 1.0 ×10^-9 to 4.0 × 10^-6 mol/L with the detection limit of 8.7× 10^-10 mol/L. This novel and highly sensitive method can be successfully applied to detect OPP in the orange rind sample.