The oxidative dissolution of metalliferous black shale in sulfuric acid solution using sodium persulfate as an oxidant was investigated. The effects of leaching factors including leaching temperature, leaching time, s...The oxidative dissolution of metalliferous black shale in sulfuric acid solution using sodium persulfate as an oxidant was investigated. The effects of leaching factors including leaching temperature, leaching time, stirring speed, initial concentration of sodium persulfate and sulfuric acid and particle size on the leaching rate were studied as well. The leaching kinetics of molybdenum, nickel and iron from metalliferous black shale shows that the leaching rate is controlled by a chemical reaction through a layer on the unreacted shrinking core. The leaching process follows the kinetics model 1-(1-a)^1/3=kt with apparent activation energies of 34.50, 43.14 and 71.79 kJ/mol for Mo, Ni and Fe, respectively. The reaction orders in sodium persulfate are 0.80, 1.01 and 0.75 for molybdenum, nickel and iron, respectively, while in sulfuric acid, these orders are 0.45, 0.75 and 0.50 for molybdenum, nickel and iron, respectively. In addition, the reaction mechanism for the dissolution of the metalliferous black shale was discussed.展开更多
The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleachi...The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleaching. The results indicate that the extracellular protein is always more than the extracellular polysaccharide secreted by attached cells on the chalcopyrite, on the contrary, and is always less than the extracellular polysaccharide secreted by free cells in the solution at bacterial adaptive phase, logarithmic phase and stationary phase whenever pH value is at 1.0, 1.5, 2.0 or 2.5; free cells are mainly through the secretion of extracellular polysaccharide rather than the extracellular protein to fight against disadvantageous solution environment, such as high concentration of metal ions and unsuitable pH solution; both amounts of polysaccharide and protein secreted by attached cells are mainly positively related to the solution acidity rather than the total concentration of soluble metal ions. The experimental results imply that bacteria are mainly through secreting more extracellular polysaccharide to fight against disadvantageous environment and the extracellular protein perhaps plays an important role in oxidation?reduction reactions in the bioleaching system.展开更多
Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decompositio...Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decomposition ratio of carbonate were investigated.The experimental result shows that the decomposition ratio of carbonate is 98.24%under the conditions of liquid-to-solid ratio of 5:1,Fe^(3+)concentration of 20 g/L,sulfuric acid concentration of 20 g/L,reaction temperature of 80 ℃ and reaction time of 2 h.Then,the slurry obtained from carbonate decomposition was put into the titanium autoclave for pressure oxidation leaching.Effects of liquid-to-solid ratio,temperature,time and oxygen partial pressure on sulfur oxidation ratio were studied during pressure oxidation.With the prolonged time,pyrite and arsenopyrite are oxidized to ferric subsulfate,hydrated ferric sulfate and jarosite,resulting in the increasing residue ratio.The residue ratio and the sulfur content in the residue can be decreased by ferric subsulfate dissolution.The oxidation ratio of the sulfur is 99.35% under the conditions of oxidation time of 4 h,temperature of 210 ℃,oxygen partial pressure of 0.8 MPa and stirring speed of 600 r/min.展开更多
A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and s...A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.展开更多
Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample.Sulfuric acid pressure leaching of zinc silicate ore was carried out to ...Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample.Sulfuric acid pressure leaching of zinc silicate ore was carried out to assess the effect of particle size,sulfuric acid concentration,pressure,reaction time and temperature on the extraction of zinc and the dissolution of silica.Under the optimum conditions employed,up to 99.25% of zinc extraction and 0.20% silica dissolution are obtained.The main minerals in leaching residue are quartz and small amounts of undissolved oxide minerals of iron,lead and aluminum are associated with quartz.展开更多
Calcium sulphoaluminate(3CaO·3Al2O3·CaSO4,abbreviated as C4A3S)was synthesized by sintering at1375°C for2h with analytically pure carbonate calcium,alumina and dihydrate calcium sulfate.The crystal stru...Calcium sulphoaluminate(3CaO·3Al2O3·CaSO4,abbreviated as C4A3S)was synthesized by sintering at1375°C for2h with analytically pure carbonate calcium,alumina and dihydrate calcium sulfate.The crystal structure of C4A3S was characterized by XRD,SEM and TEM.Alumina leaching properties in Na2CO3solution were studied,and the leaching mechanism was investigated by means of Raman spectrum and XRD.The results show that C4A3S has porous morphology.The polycrystallines and single crystals coexist in C4A3S and grow along different directions.The alumina leaching rate of C4A3S is98.41%,which is higher than that of12CaO·7Al2O3under the optimal condition.The aluminum and sulfur elements exist in the leaching solution in the form of Al(OH)4and24SO,respectively,and the calcium exists as CaCO3in the leaching residues.展开更多
The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are pre...The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the calculated Gibbs energies and analysis of E-pH diagrams. Experimental data, thermodynamic analysis, chemical, XRD, and SEM/EDX analyses of concentrate and the leach residues, were performed to develop a better understanding of the chemical reactions that took place in the system. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and tended to inhibit the leaching rate.展开更多
基金Project(15A151)supported by the Key Research Projects of Education Department of Hunan Province,ChinaProject(2015JJ2115)supported by the Natural Science Fund Council of Hunan Province,China+1 种基金Project(JSU071308)supported by the Construct Program of the Key Discipline in Hunan Province,ChinaProject(APSTIRT02)supported by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The oxidative dissolution of metalliferous black shale in sulfuric acid solution using sodium persulfate as an oxidant was investigated. The effects of leaching factors including leaching temperature, leaching time, stirring speed, initial concentration of sodium persulfate and sulfuric acid and particle size on the leaching rate were studied as well. The leaching kinetics of molybdenum, nickel and iron from metalliferous black shale shows that the leaching rate is controlled by a chemical reaction through a layer on the unreacted shrinking core. The leaching process follows the kinetics model 1-(1-a)^1/3=kt with apparent activation energies of 34.50, 43.14 and 71.79 kJ/mol for Mo, Ni and Fe, respectively. The reaction orders in sodium persulfate are 0.80, 1.01 and 0.75 for molybdenum, nickel and iron, respectively, while in sulfuric acid, these orders are 0.45, 0.75 and 0.50 for molybdenum, nickel and iron, respectively. In addition, the reaction mechanism for the dissolution of the metalliferous black shale was discussed.
基金Project(31200382)supported by the National Natural Science Foundation of China
文摘The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleaching. The results indicate that the extracellular protein is always more than the extracellular polysaccharide secreted by attached cells on the chalcopyrite, on the contrary, and is always less than the extracellular polysaccharide secreted by free cells in the solution at bacterial adaptive phase, logarithmic phase and stationary phase whenever pH value is at 1.0, 1.5, 2.0 or 2.5; free cells are mainly through the secretion of extracellular polysaccharide rather than the extracellular protein to fight against disadvantageous solution environment, such as high concentration of metal ions and unsuitable pH solution; both amounts of polysaccharide and protein secreted by attached cells are mainly positively related to the solution acidity rather than the total concentration of soluble metal ions. The experimental results imply that bacteria are mainly through secreting more extracellular polysaccharide to fight against disadvantageous environment and the extracellular protein perhaps plays an important role in oxidation?reduction reactions in the bioleaching system.
基金Project(51404296)supported by the Young Scientists Fund of National Natural Science Foundation of ChinaProject(134414)supported by the Postdoctoral Funded Program of Central South University,China
文摘Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decomposition ratio of carbonate were investigated.The experimental result shows that the decomposition ratio of carbonate is 98.24%under the conditions of liquid-to-solid ratio of 5:1,Fe^(3+)concentration of 20 g/L,sulfuric acid concentration of 20 g/L,reaction temperature of 80 ℃ and reaction time of 2 h.Then,the slurry obtained from carbonate decomposition was put into the titanium autoclave for pressure oxidation leaching.Effects of liquid-to-solid ratio,temperature,time and oxygen partial pressure on sulfur oxidation ratio were studied during pressure oxidation.With the prolonged time,pyrite and arsenopyrite are oxidized to ferric subsulfate,hydrated ferric sulfate and jarosite,resulting in the increasing residue ratio.The residue ratio and the sulfur content in the residue can be decreased by ferric subsulfate dissolution.The oxidation ratio of the sulfur is 99.35% under the conditions of oxidation time of 4 h,temperature of 210 ℃,oxygen partial pressure of 0.8 MPa and stirring speed of 600 r/min.
基金financial supports from the National Natural Science Foundation of China (51634010,51904354)the National Science Fund for Distinguished Young Scholars of China (51825403)+1 种基金the National Key R&D Program of China (2018YFC1900306,2019YFC1907405)Key Research and Development Program of Hunan Province,China (2019SK2291)。
文摘A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.
基金Project(2007CB613605) supported by the National Basic Research Program of China
文摘Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample.Sulfuric acid pressure leaching of zinc silicate ore was carried out to assess the effect of particle size,sulfuric acid concentration,pressure,reaction time and temperature on the extraction of zinc and the dissolution of silica.Under the optimum conditions employed,up to 99.25% of zinc extraction and 0.20% silica dissolution are obtained.The main minerals in leaching residue are quartz and small amounts of undissolved oxide minerals of iron,lead and aluminum are associated with quartz.
基金Project (E2016208107) supported by the Natural Science Foundation of Hebei Province,ChinaProjects (QN2015002,BJ2016023) supported by the Science and Technology Foundation of Higher Education Institution of Hebei Province,China
文摘Calcium sulphoaluminate(3CaO·3Al2O3·CaSO4,abbreviated as C4A3S)was synthesized by sintering at1375°C for2h with analytically pure carbonate calcium,alumina and dihydrate calcium sulfate.The crystal structure of C4A3S was characterized by XRD,SEM and TEM.Alumina leaching properties in Na2CO3solution were studied,and the leaching mechanism was investigated by means of Raman spectrum and XRD.The results show that C4A3S has porous morphology.The polycrystallines and single crystals coexist in C4A3S and grow along different directions.The alumina leaching rate of C4A3S is98.41%,which is higher than that of12CaO·7Al2O3under the optimal condition.The aluminum and sulfur elements exist in the leaching solution in the form of Al(OH)4and24SO,respectively,and the calcium exists as CaCO3in the leaching residues.
文摘The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the calculated Gibbs energies and analysis of E-pH diagrams. Experimental data, thermodynamic analysis, chemical, XRD, and SEM/EDX analyses of concentrate and the leach residues, were performed to develop a better understanding of the chemical reactions that took place in the system. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and tended to inhibit the leaching rate.