以沼泽红假单胞菌W1为研究对象,考察了厌氧条件下硫酸盐还原对活性黑5(Reactive Black 5,RB5)和直接黄11(Direct Yellow 11,DY11)生物脱色的影响。结果表明,硫酸盐本身对2种染料脱色无明显影响,而硫酸盐的还原产物———硫化物能通过氧...以沼泽红假单胞菌W1为研究对象,考察了厌氧条件下硫酸盐还原对活性黑5(Reactive Black 5,RB5)和直接黄11(Direct Yellow 11,DY11)生物脱色的影响。结果表明,硫酸盐本身对2种染料脱色无明显影响,而硫酸盐的还原产物———硫化物能通过氧化还原介体使2种染料化学脱色,其脱色过程能在3 min内迅速完成。在无介体加入的情况下,硫化物能够通过RB5自身产生的介体加速RB5的脱色;而对于不能产生氧化还原介体的DY11,硫化物对其脱色无明显影响。硫化物经染料氧化后形成的硫单质能够被菌株W1重新转化为硫化物,继续还原染料。展开更多
An enriched and domesticated bacteria consortium of sulfate-reducing bacteria(SRB)was used to treat wastewater from zinc pyrithione(ZPT)production,and the effects of different reaction parameters on sulfate reduction ...An enriched and domesticated bacteria consortium of sulfate-reducing bacteria(SRB)was used to treat wastewater from zinc pyrithione(ZPT)production,and the effects of different reaction parameters on sulfate reduction and zinc precipitation were evaluated.The single-factor experimental results showed that the removal rates of Zn2+and24SO?decreased with an increased ZPT concentration ranging from3.0to5.0mg/L.Zn2+and24SO?in wastewater were effectively removed under the conditions of30?35°C,pH7?8and an inoculum concentration of10%?25%.The presence of Fe0in the SRB system enhanced Zn2+and24SO?removal and may increase the resistance of SRB to the toxicity of Zn2+and ZPT in wastewater.A Box?Behnken design was used to evaluate the influence of the main operating parameters on the removal rate of24SO?.The optimum parameter values were found to be pH7.45,33.61°C and ZPT concentration of0.62mg/L,and the removal rate of24SO?reached a maximum of91.62%under these optimum conditions.展开更多
A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30~C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkalin...A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30~C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity, pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L.d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L·d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L·d), while that of methanogenesis was 75.6 μL CH4/(L·d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis.展开更多
基金Project(2015DFG92750)supported by the International S&T Cooperation Program of ChinaProjects(51278464,51478172)supported by the National Natural Science Foundation of ChinaProject(2014GK1012)supported by the Department of Science and Technology of Hunan Province,China
文摘An enriched and domesticated bacteria consortium of sulfate-reducing bacteria(SRB)was used to treat wastewater from zinc pyrithione(ZPT)production,and the effects of different reaction parameters on sulfate reduction and zinc precipitation were evaluated.The single-factor experimental results showed that the removal rates of Zn2+and24SO?decreased with an increased ZPT concentration ranging from3.0to5.0mg/L.Zn2+and24SO?in wastewater were effectively removed under the conditions of30?35°C,pH7?8and an inoculum concentration of10%?25%.The presence of Fe0in the SRB system enhanced Zn2+and24SO?removal and may increase the resistance of SRB to the toxicity of Zn2+and ZPT in wastewater.A Box?Behnken design was used to evaluate the influence of the main operating parameters on the removal rate of24SO?.The optimum parameter values were found to be pH7.45,33.61°C and ZPT concentration of0.62mg/L,and the removal rate of24SO?reached a maximum of91.62%under these optimum conditions.
基金Supported by the Ministry of Education and Science of the Russian Federation(No.1990)the Russian Foundation for Basic Research(No.13-04-00646)the Presidium of the Russian Academy of Sciences Program No.28"Biosphere Origin and Evolution"
文摘A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30~C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity, pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L.d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L·d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L·d), while that of methanogenesis was 75.6 μL CH4/(L·d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis.