为了在保证绘制图像质量的基础上将体绘制算法的绘制速度提高至实时,提出一种基于可编程图形加速硬件(GPU)的光线投射算法实现(GRC,GPU-based Ray Casting)。GRC在可编程GPU中进行重采样和分类,使用矩阵逆运算以降低重采样坐标的计算复...为了在保证绘制图像质量的基础上将体绘制算法的绘制速度提高至实时,提出一种基于可编程图形加速硬件(GPU)的光线投射算法实现(GRC,GPU-based Ray Casting)。GRC在可编程GPU中进行重采样和分类,使用矩阵逆运算以降低重采样坐标的计算复杂度,使用后分类技术以降低算法的空间复杂度。实验表明:对于2563规模的体数据,GRC能够在保证图像质量的基础,以超过30fps的速度进行绘制。展开更多
针对网络功能虚拟化(Network Function Virtualization,NFV)在通用服务器中部署的处理性能受限问题,该文提出了一种基于硬件加速的虚拟网络功能(Virtual Network Function,VNF)处理结构:FARD(Function Adaptive and Resource Dividable ...针对网络功能虚拟化(Network Function Virtualization,NFV)在通用服务器中部署的处理性能受限问题,该文提出了一种基于硬件加速的虚拟网络功能(Virtual Network Function,VNF)处理结构:FARD(Function Adaptive and Resource Dividable hardware structure).通过可编程的包头解析器和动作处理器,FARD可实现任意L2/3/4层功能实例的硬件加速处理;通过动态可分割的匹配表结构,FARD支持不同功能实例间的资源动态分配和隔离.基于NetFPGA-10G的实验结果表明,对比基于纯软件实现的VNF,FARD加速结构提升了近60倍的包处理吞吐率.展开更多
文摘为了在保证绘制图像质量的基础上将体绘制算法的绘制速度提高至实时,提出一种基于可编程图形加速硬件(GPU)的光线投射算法实现(GRC,GPU-based Ray Casting)。GRC在可编程GPU中进行重采样和分类,使用矩阵逆运算以降低重采样坐标的计算复杂度,使用后分类技术以降低算法的空间复杂度。实验表明:对于2563规模的体数据,GRC能够在保证图像质量的基础,以超过30fps的速度进行绘制。