The present paper discusses a design method for the head position in a Hard Disk Drive (HDD) control system. In the HDD control system, the sampling interval of the head position is constrained because of the hardwa...The present paper discusses a design method for the head position in a Hard Disk Drive (HDD) control system. In the HDD control system, the sampling interval of the head position is constrained because of the hardware specifications, but the hold interval of the control input is not constrained. In the present study, a multirate control system is designed, in which the sampling and the hold intervals are not equal. A multirate control law, which stabilizes a closed-loop system, is extended using newly introduced parameters such that the sample response of the plant output is maintained. Furthermore, intersample ripples in the steady state are eliminated using the new design parameters, which can be selected independently of the sample response. As a result, the intersample response can be improved independently of the sample response. The proposed method is applied to a benchmark problem of an HDD system, and its effectiveness is demonstrated.展开更多
文摘The present paper discusses a design method for the head position in a Hard Disk Drive (HDD) control system. In the HDD control system, the sampling interval of the head position is constrained because of the hardware specifications, but the hold interval of the control input is not constrained. In the present study, a multirate control system is designed, in which the sampling and the hold intervals are not equal. A multirate control law, which stabilizes a closed-loop system, is extended using newly introduced parameters such that the sample response of the plant output is maintained. Furthermore, intersample ripples in the steady state are eliminated using the new design parameters, which can be selected independently of the sample response. As a result, the intersample response can be improved independently of the sample response. The proposed method is applied to a benchmark problem of an HDD system, and its effectiveness is demonstrated.