期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
石膏对贝利特-硫铝酸钡钙水泥强度和硬化浆体结构的影响 被引量:4
1
作者 武红霞 芦令超 +2 位作者 王守德 陈诚 李秋英 《硅酸盐通报》 CAS CSCD 北大核心 2009年第2期303-306,311,共5页
研究了石膏对贝利特-硫铝酸钡钙水泥强度和硬化浆体结构的影响。结果表明:贝利特-硫铝酸钡钙水泥熟料的矿物组成主要有C3S、C2S、C3A、C4AF和C2.75B1.25A3S;当水泥中石膏掺量为10%时,贝利特-硫铝酸钡钙水泥的3d、7d、28d和90d抗压强度... 研究了石膏对贝利特-硫铝酸钡钙水泥强度和硬化浆体结构的影响。结果表明:贝利特-硫铝酸钡钙水泥熟料的矿物组成主要有C3S、C2S、C3A、C4AF和C2.75B1.25A3S;当水泥中石膏掺量为10%时,贝利特-硫铝酸钡钙水泥的3d、7d、28d和90d抗压强度分别达到了45.0、61.9、82.1和85.6MPa;贝利特-硫铝酸钡钙水泥的水化产物主要有AFt、Ca(OH)2、C-S-H凝胶等,随石膏掺量的增加,AFt的数量逐渐增加,水化后期的Ca(OH)2数量逐渐减少。用XRD和SEM来分析硬化水泥浆体组成和结构。 展开更多
关键词 石膏 贝利特-硫铝酸钡钙 强度 硬化结构
下载PDF
石膏对石灰石粉水泥基材料水化及硬化性能的影响 被引量:6
2
作者 刘娟红 李康 +1 位作者 宋少民 卞立波 《材料导报》 EI CAS CSCD 北大核心 2017年第4期105-110,125,共7页
针对我国目前非荷载作用下混凝土严重开裂的问题,以"比表面积较低的水泥熟料-比表面积较高的掺合料-足够掺量的石膏"构成的胶凝材料体系为研究对象,通过水化热速率、X射线衍射(XRD)、扫描电子显微镜(SEM)、压汞法(MIP)及热重... 针对我国目前非荷载作用下混凝土严重开裂的问题,以"比表面积较低的水泥熟料-比表面积较高的掺合料-足够掺量的石膏"构成的胶凝材料体系为研究对象,通过水化热速率、X射线衍射(XRD)、扫描电子显微镜(SEM)、压汞法(MIP)及热重-差示扫描量热法(TG-DSC)等手段,研究石膏对石灰石粉水泥基材料水化及硬化体微结构的影响。结果表明,石灰石粉能够加速C3A与石膏作用生成钙矾石相,在足量石膏存在的条件下,能够阻碍钙矾石向低硫型硫铝酸钙转变;石灰石粉的掺入与石膏一起延缓了C3A的水化;在石灰石粉和足够石膏同时存在的情况下,C3A水化生成具有膨胀性的水化碳铝酸钙和高硫型硫铝酸钙,补偿了收缩,提高了水泥基材料的抗裂性能;熟料粗磨、掺合料细磨及较高石膏掺量的胶凝材料体系配制的C30和C50等级混凝土,强度能持续增大,从28d到180d,强度分别提高了36.7%和33.3%,混凝土结构紧密、孔隙率低、有害孔含量少。 展开更多
关键词 石灰石粉 石膏 胶凝材料 水化 硬化结构
下载PDF
粉磨细度对磷石膏物相转变速率和力学强度的影响研究 被引量:2
3
作者 何芋崎 李显波 +3 位作者 杜亚文 李明露 陈光超 张云鹏 《矿产综合利用》 CAS 北大核心 2022年第6期36-41,共6页
采用磷石膏制备建筑石膏是规模化消纳磷石膏的重要途径。本文研究了粉磨细度对磷石膏制备建筑石膏物相转化速率及硬化体力学强度与结构的影响。研究结果表明:提高煅烧温度有利于加快磷石膏脱水,合适的煅烧温度为120℃。随着粉磨细度的增... 采用磷石膏制备建筑石膏是规模化消纳磷石膏的重要途径。本文研究了粉磨细度对磷石膏制备建筑石膏物相转化速率及硬化体力学强度与结构的影响。研究结果表明:提高煅烧温度有利于加快磷石膏脱水,合适的煅烧温度为120℃。随着粉磨细度的增加,磷石膏转化为建筑石膏的速率先增加后降低,所制备建筑石膏的抗折强度和抗压强度先增大后降低;未经粉磨的磷石膏制备的建筑石膏硬化体结构松散、孔洞较多、粉化严重,抗折强度和抗压强度仅分别为0.24 MPa和0.57 MPa;当磷石膏平均粒径减小到49.95μm时,磷石膏脱水速率加快,水化生成的二水石膏晶体粒度均匀,硬化体结构致密、孔洞较少,抗折强度和抗压强度分别提高至1.02 MPa和2.62 MPa。因此,通过粉磨改性不仅有利于提高磷石膏的脱水速率,还能有效改善石膏硬化体的结构,提高建筑石膏的力学强度。 展开更多
关键词 磷石膏 粉磨细度 转化速率 力学强度 硬化体结构
下载PDF
石膏-水泥-粉煤灰系复合胶凝材料的研究 被引量:12
4
作者 冯启彪 任增茂 +1 位作者 田斌守 杨树新 《新型建筑材料》 北大核心 2009年第6期14-16,共3页
对石膏、水泥及粉煤灰等胶凝材料进行复合改性研究,结果表明,石膏-水泥-粉煤灰系复合胶凝材料在适宜的配比下,可以制作耐水性好、强度高以及干燥收缩率低的新型墙体材料。通过对试件硬化体微观晶体形貌的观测研究,分析了石膏-水泥-粉煤... 对石膏、水泥及粉煤灰等胶凝材料进行复合改性研究,结果表明,石膏-水泥-粉煤灰系复合胶凝材料在适宜的配比下,可以制作耐水性好、强度高以及干燥收缩率低的新型墙体材料。通过对试件硬化体微观晶体形貌的观测研究,分析了石膏-水泥-粉煤灰系复合胶凝材料耐水性能改善的机理。 展开更多
关键词 石膏 水泥 粉煤灰 建筑墙板 耐水性 强度 硬化结构
下载PDF
Hydration phase and pore structure evolution of hardened cement paste at elevated temperature 被引量:5
5
作者 XIANG Yu XIE You-jun +1 位作者 LONG Guang-cheng HE Fu-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1665-1678,共14页
To understand the effect of steam curing temperature on the hydrate and microstructure of hardened cement paste,several measuring methods including X-ray diffraction(XRD),atomic absorption spectroscopy(ASS),ion chroma... To understand the effect of steam curing temperature on the hydrate and microstructure of hardened cement paste,several measuring methods including X-ray diffraction(XRD),atomic absorption spectroscopy(ASS),ion chromatography,conductivity meter,alternating-current impedance spectroscopy and nuclear magnetic resonance(NMR)are employed to investigate the hydration characteristics,pore solution composition and conductivity,resistivity and pore structure during the steam curing process.Experimental results show that steam curing promotes the hydration process,greatly raises the resistivity,and decreases the porosity of specimen at early age.Compared with being treated at 45℃,higher temperature leads to a fast decomposition of ettringite at initial stage of the constant temperature treatment period,which improves the relative content and ionic activity of the conductive ions in pore solution.Furthermore,the number of pores larger than 200 nm increases significantly,which reduces the resistivity of the hardened cement paste.Cement paste treated at 45℃ has a more stable and denser microstructure with less damages. 展开更多
关键词 cement paste high-temperature curing pore structure AC impedance nuclear magnetic resonance
下载PDF
The Effect of Vanadium Content on Mechanical Properties and Structure of Self-Hardening Steel X 160C rMo 12-1
6
作者 Aleksandar Todic Dejan Cikara Tomislav Todie Branko Pejovie Milan Misic Ivica Camagie 《Journal of Mechanics Engineering and Automation》 2013年第3期168-172,共5页
The aim of this research was to examine the influence of vanadium on the structure, hardness and tensile strength of X I60CrMo 12-1 self-hardened steels. It is known that vanadium affects the process of solidification... The aim of this research was to examine the influence of vanadium on the structure, hardness and tensile strength of X I60CrMo 12-1 self-hardened steels. It is known that vanadium affects the process of solidification of this alloy in a way that narrows temperature interval of crystallization. Vanadium, as an alloying element, moves liquidus and solidus lines toward higher temperatures, approximately for 25 to 30 ~C. In addition, vanadium forms V6C5 carbides, which, are partly distributed between present phases in the steel; carbide (Cr,Fe)7C3 and austenite. The presence of vanadium enables the formation of (Cr, Fe)23C6 carbide and its precipitation into austenite during the cooling process. In local areas around fine carbide particles, austenite is transformed into martensite, i.e., vanadium reduces remained austenite and improves steel air-hardening. Vanadium concentration over 2.5% significantly improves the impact toughness. The basic problem in the application of high alloyed Cr-Mo steels is to increase their impact toughness and thereby sustain a relatively high value of hardness. Recent studies, concerning to the chemical composition and heat treatment regime, show that it is possible to get a martensitic structure with a very small amount of retained austenite. Investigations are directed toward the testing of the influence of alloying elements such as molybdenum, manganese and especially vanadium. Vanadium has great influence to the crystallization process. With increasing of its content, the eutectic point moves toward lower carbon concentrations and the temperature interval of solidification is narrowing. 展开更多
关键词 VANADIUM impact toughness HARDNESS microstructure.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部