The objective of this work is to study the cryogenic sheet metal forming behaviour of precipitation hardening AW-6016-T4.In this regard,the flow curves and forming limit curves were obtained by tension and Nakazima ex...The objective of this work is to study the cryogenic sheet metal forming behaviour of precipitation hardening AW-6016-T4.In this regard,the flow curves and forming limit curves were obtained by tension and Nakazima experimental testing methods in thetemperature ranges from-196to25°C.It was found that strength and elongation increase with decreasing temperature.Small butperceived differences between microstructure of the material deformed at the room and cryogenic temperatures respectively wereidentified by electron backscatter diffraction(EBSD)analysis.However,no significant difference in the precipitation kinetics duringcontinuous heating in the DSC has been observed.This study has demonstrated the potential of cryogenic forming by manufacturinga B-pillar part with8mm depth of side design element as compared to6mm at room temperature.展开更多
Forming limit diagram (FLD) is an important performance index to describe the maximum limit of principal strains that can be sustained by sheet metals till to the onset of localized necking. It offers a convenient and...Forming limit diagram (FLD) is an important performance index to describe the maximum limit of principal strains that can be sustained by sheet metals till to the onset of localized necking. It offers a convenient and useful tool to predict the forming limit in the sheet metal forming processes. In the present study, FLD has been determined experimentally for Ti?6Al?4V alloy at 400 °C by conducting a Nakazima test with specimens of different widths. Additionally, for theoretical FLD prediction, various anisotropic yield criteria (Barlat 1989, Barlat 1996, Hill 1993) and different hardening models viz., Hollomon power law (HPL), Johnson?Cook (JC), modified Zerilli–Armstrong (m-ZA), modified Arrhenius (m-Arr) models have been developed. Theoretical FLDs have been determined using Marciniak and Kuczynski (M?K) theory incorporating the developed yield criteria and constitutive models. It has been observed that the effect of yield model is more pronounced than the effect of constitutive model for theoretical FLDs prediction. However, the value of thickness imperfection factor (f0) is solely dependent on hardening model. Hill (1993) yield criterion is best suited for FLD prediction in the right hand side region. Moreover, Barlat (1989) yield criterion is best suited for FLD prediction in left hand side region. Therefore, the proposed hybrid FLD in combination with Barlat (1989) and Hill (1993) yield models with m-Arr hardening model is in the best agreement with experimental FLD.展开更多
基金the Austrian Research Promotion Agency (FFG)the Federal Ministry for Transport, Innovation and Technology (bmvit) for sponsoring the project Kryo Alu in the framework of Kooperative F&E-Projekte-Industrielle Forschung, Experimentelle Entwicklung
文摘The objective of this work is to study the cryogenic sheet metal forming behaviour of precipitation hardening AW-6016-T4.In this regard,the flow curves and forming limit curves were obtained by tension and Nakazima experimental testing methods in thetemperature ranges from-196to25°C.It was found that strength and elongation increase with decreasing temperature.Small butperceived differences between microstructure of the material deformed at the room and cryogenic temperatures respectively wereidentified by electron backscatter diffraction(EBSD)analysis.However,no significant difference in the precipitation kinetics duringcontinuous heating in the DSC has been observed.This study has demonstrated the potential of cryogenic forming by manufacturinga B-pillar part with8mm depth of side design element as compared to6mm at room temperature.
基金The financial support received for this research work from Department of Science and Technology (DST), Government of India, SERB-DST, SR/FTP/ETA0056/2011
文摘Forming limit diagram (FLD) is an important performance index to describe the maximum limit of principal strains that can be sustained by sheet metals till to the onset of localized necking. It offers a convenient and useful tool to predict the forming limit in the sheet metal forming processes. In the present study, FLD has been determined experimentally for Ti?6Al?4V alloy at 400 °C by conducting a Nakazima test with specimens of different widths. Additionally, for theoretical FLD prediction, various anisotropic yield criteria (Barlat 1989, Barlat 1996, Hill 1993) and different hardening models viz., Hollomon power law (HPL), Johnson?Cook (JC), modified Zerilli–Armstrong (m-ZA), modified Arrhenius (m-Arr) models have been developed. Theoretical FLDs have been determined using Marciniak and Kuczynski (M?K) theory incorporating the developed yield criteria and constitutive models. It has been observed that the effect of yield model is more pronounced than the effect of constitutive model for theoretical FLDs prediction. However, the value of thickness imperfection factor (f0) is solely dependent on hardening model. Hill (1993) yield criterion is best suited for FLD prediction in the right hand side region. Moreover, Barlat (1989) yield criterion is best suited for FLD prediction in left hand side region. Therefore, the proposed hybrid FLD in combination with Barlat (1989) and Hill (1993) yield models with m-Arr hardening model is in the best agreement with experimental FLD.