In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the de...In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.展开更多
A mathematical model is made which describes the curing process of composites constructed from continuous fiber-reinforced, thermosetting resin matrix prepreg materials, and the consolidation of the composite is devel...A mathematical model is made which describes the curing process of composites constructed from continuous fiber-reinforced, thermosetting resin matrix prepreg materials, and the consolidation of the composite is developed. The model provides the variation of temperature distribution, the cure reaction process in the resin, the resin flow and fibers stress inside the composite, and the void variation and the residual stress distribution. It can be used to illustrate the mechanism of curing process and optimize the cure cycle of composite material in order to ensure the quality of a product.展开更多
文摘In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.
文摘A mathematical model is made which describes the curing process of composites constructed from continuous fiber-reinforced, thermosetting resin matrix prepreg materials, and the consolidation of the composite is developed. The model provides the variation of temperature distribution, the cure reaction process in the resin, the resin flow and fibers stress inside the composite, and the void variation and the residual stress distribution. It can be used to illustrate the mechanism of curing process and optimize the cure cycle of composite material in order to ensure the quality of a product.