The mechanical characteristics of the weld joint were investigated by tensile test, microstructure test, and microhardness test. The welded tube NC bending tests were carried out to evaluate the weld on the formabilit...The mechanical characteristics of the weld joint were investigated by tensile test, microstructure test, and microhardness test. The welded tube NC bending tests were carried out to evaluate the weld on the formability of the QSTE340 welded tube. The results show that the wall thinning degree, cross-sectional deformation and springback angle increase significantly as the weld line is located on the outside of the bend compared with that located on the middle and inside, and the welded tubes produce nearly identical performance as the weld line is located on the middle and inside. The wall thickening degree decreases much as the weld line is located on the inside of the bend. So the welded tube can acquire good bending formability as the weld line is located in the region away from the outside of the bend.展开更多
Knotless polyethylene(PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity...Knotless polyethylene(PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity ratios were assessed in a flume tank under various attack angles of netting from 0?(parallel to flow) to 90?(perpendicular to flow) and current speeds from 40 cm s^(-1) to 130 cm s^(-1). It was found that the drag coefficient was related to Reynolds number, solidity ratio and attack angle of netting. The solidity ratio was positively related with drag coefficient for netting panel perpendicular to flow, whereas when setting the netting panel parallel to the flow the opposite result was obtained. For netting panels placed at an angle to the flow, the lift coefficient reached the maximum at an attack angle of 50? and then decreased as the attack angle further increased. The solidity ratio had a dual influence on drag coefficient of inclined netting panels. Compared to result in the literature, the normal drag coefficient of knotless PE netting measured in this study is larger than that of nylon netting or Dyneema netting.展开更多
In this paper,an ab initio,local density functional(LDF)method was used to explore the relationship between the molecular properties of additives and the lubricating performance of aluminum rolling oil.The structural ...In this paper,an ab initio,local density functional(LDF)method was used to explore the relationship between the molecular properties of additives and the lubricating performance of aluminum rolling oil.The structural properties of butyl stearate,dodecanol,docosanol,and methyl dodecanoate were studied according to the density functional theory.The calculated data showed that the atoms in or around the functional groups might be likely the reacting sites.Because of the different functional groups and structure of ester and alcohol,two types of complex additives,dodecanol and butyl stearate,methyl dodecanoate and butyl stearate,respectively,were chosen for studying their tribological properties and performing aluminum cold rolling experiments.The test results agreed with the calculated results very well.The complex ester,viz.methyl dodecanoate and butyl stearate,had the best lubricating performance with a friction coefficient of 0.084 1 and a permissive-rolling thickness of 0.040 mm as compared with that of dodecanol-butyl stearate-base oil formulation.展开更多
Soils in the Knersvlakte are particularly prone to crusting and have lower inherent infiltrability than other soils across western southern Africa. Micromorphological techniques were used to examine the structure and ...Soils in the Knersvlakte are particularly prone to crusting and have lower inherent infiltrability than other soils across western southern Africa. Micromorphological techniques were used to examine the structure and porosity of soil crusts in the Knersvlakte to ascertain why crusting is so intense in this region. Quantile regression using boundary lines was employed to examine the relationships between infiltrability and soil properties for all samples (n = 67). This analysis showed that infiltrability is potentially maximal at low water- dispersible 'clay plus silt' content and low silt content (r^2 = 0.72 and 0.64; respectively, n = 67) (Figure 2). The strength of crusts, pH, EC, clay mineralogy, and water-dispersible clay, silt and 'clay plus silt' content were compared, and a pore analysis using optical microscopy was undertaken on images of six soil thin sections (n = 6) (circular and parallel polarizers). Pore analysis was further undertaken on five horizontal slices of equal dimensions taken through each soil thin section. The porosity samples with low infiltrability (〈 100 mm·hr^-1, n = 4) had greater crust strength, lower porosity (both total and in the least porous slice) and greater water-dispersible 'day plus silt' and silt content than the porosity samples with high infiltrability (〉 100mm·hr^-1, n = 2). The porosity samples with low infiltrability showed a trend of lower pH and greater water dispersible clay percentage. Porosity varied within the porosity samples due to the presence of dense clay/silt bands (〈 0.5 mm in width) with relatively few air vesicles. The porosity samples with horizontal slices of low porosity (but large numbers of air vesicles) had low infiltrability, while those without slices of low porosity (and relatively few air vesicles) had high infiltrability. We conclude that the intense crusting and resultant low infiltrability of soils in the Knersvlakte appears to be related to the formation of thin, dense clay/silt bands in the pedoderm.展开更多
Particle breakage has a significant influence on the stress-strain and strength behavior of rockfill material.A breakage critical state theory(BCST)was proposed to describe the evolution of particle breakage.The break...Particle breakage has a significant influence on the stress-strain and strength behavior of rockfill material.A breakage critical state theory(BCST)was proposed to describe the evolution of particle breakage.The breakage critical state line in the breakage critical state theory was correlated with the breakage factor,which was fundamentally different from that of the original critical state theory.A simple elastoplastic constitutive model was developed for rockfill in the frame of BCST.An associated flow rule was adopted in this model.Isotropic,contractive and distortional hardening rules were suggested in view of the particle breakage.It was observed that the proposed model could well represent the complex deformation behaviors of rockfill material,such as the strain hardening,post-peak strain softening,volumetric contraction,volumetric expansion,and particle breakage under different initial confining pressures.展开更多
There has been a growing demand for safety parts with tailored properties in automobile industry.However,the understanding of tribological behavior of press hardening steels(PHS)on the tailored conditions is highly in...There has been a growing demand for safety parts with tailored properties in automobile industry.However,the understanding of tribological behavior of press hardening steels(PHS)on the tailored conditions is highly inadequate.The present work aims at creating new knowledge about the tribological characteristics of PHS on the tailored conditions and bridging this existing gap.The paper proposes an improved hot drawing tribo-simulator to simulate the realistic experimental conditions industry.Investigations were carried out on the condition of different initial heating temperatures,tool temperatures,austenitizing temperatures,cooling rates and microstructures.The presented results show that the whole frictional process is divided into three stages for both coated and uncoated steels.The frictional factor changes a lot and the peak value of frictional factor occurs for serious adhesive wear.The frictional factor rises as the tool temperature and austenitizing temperature rise.The surface morphology of tools indicates that the coating adhering to tool gets thicker as the tool temperature increases.With the increase of cooling rate,the frictional factor declines firstly and then rises to some extent.Flat dies with different temperatures are used to form specimens with different microstructures,which also affects the frictional factor and wear.展开更多
基金Supported by National Natural Science Foundation of China (No. 50875216)
文摘The mechanical characteristics of the weld joint were investigated by tensile test, microstructure test, and microhardness test. The welded tube NC bending tests were carried out to evaluate the weld on the formability of the QSTE340 welded tube. The results show that the wall thinning degree, cross-sectional deformation and springback angle increase significantly as the weld line is located on the outside of the bend compared with that located on the middle and inside, and the welded tubes produce nearly identical performance as the weld line is located on the middle and inside. The wall thickening degree decreases much as the weld line is located on the inside of the bend. So the welded tube can acquire good bending formability as the weld line is located in the region away from the outside of the bend.
基金the National High Technology Research and Development Program of China (No. 2012AA092302)the Shanghai Education Commission ‘Summit and Highland’ Discipline Construction for Fisheries Sciences (No. B2-5005-13-0001-5)+2 种基金the open funding for the Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources (No. A0203-16-2007-6)the Public Projects of Research on Technology and Application in Zhejiang Province (No. 2016C33083)the National Natural Science Foundation of China (No. 41506151)
文摘Knotless polyethylene(PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity ratios were assessed in a flume tank under various attack angles of netting from 0?(parallel to flow) to 90?(perpendicular to flow) and current speeds from 40 cm s^(-1) to 130 cm s^(-1). It was found that the drag coefficient was related to Reynolds number, solidity ratio and attack angle of netting. The solidity ratio was positively related with drag coefficient for netting panel perpendicular to flow, whereas when setting the netting panel parallel to the flow the opposite result was obtained. For netting panels placed at an angle to the flow, the lift coefficient reached the maximum at an attack angle of 50? and then decreased as the attack angle further increased. The solidity ratio had a dual influence on drag coefficient of inclined netting panels. Compared to result in the literature, the normal drag coefficient of knotless PE netting measured in this study is larger than that of nylon netting or Dyneema netting.
基金the financial support of this study provided by the National Natural Science Foundation of China(No.51274037)the Cooperation Program between USTB and SINOPEC(No.112116)
文摘In this paper,an ab initio,local density functional(LDF)method was used to explore the relationship between the molecular properties of additives and the lubricating performance of aluminum rolling oil.The structural properties of butyl stearate,dodecanol,docosanol,and methyl dodecanoate were studied according to the density functional theory.The calculated data showed that the atoms in or around the functional groups might be likely the reacting sites.Because of the different functional groups and structure of ester and alcohol,two types of complex additives,dodecanol and butyl stearate,methyl dodecanoate and butyl stearate,respectively,were chosen for studying their tribological properties and performing aluminum cold rolling experiments.The test results agreed with the calculated results very well.The complex ester,viz.methyl dodecanoate and butyl stearate,had the best lubricating performance with a friction coefficient of 0.084 1 and a permissive-rolling thickness of 0.040 mm as compared with that of dodecanol-butyl stearate-base oil formulation.
基金BIOTA Southern Africa (sponsored by the German Federal Ministry of Education and Research under promotion number 01 LC 0024A)the South African government (National Research Foundation, Mobility and Training Grant 2005/ GUN No: 2072287/ PUN No: 212778) for financial support
文摘Soils in the Knersvlakte are particularly prone to crusting and have lower inherent infiltrability than other soils across western southern Africa. Micromorphological techniques were used to examine the structure and porosity of soil crusts in the Knersvlakte to ascertain why crusting is so intense in this region. Quantile regression using boundary lines was employed to examine the relationships between infiltrability and soil properties for all samples (n = 67). This analysis showed that infiltrability is potentially maximal at low water- dispersible 'clay plus silt' content and low silt content (r^2 = 0.72 and 0.64; respectively, n = 67) (Figure 2). The strength of crusts, pH, EC, clay mineralogy, and water-dispersible clay, silt and 'clay plus silt' content were compared, and a pore analysis using optical microscopy was undertaken on images of six soil thin sections (n = 6) (circular and parallel polarizers). Pore analysis was further undertaken on five horizontal slices of equal dimensions taken through each soil thin section. The porosity samples with low infiltrability (〈 100 mm·hr^-1, n = 4) had greater crust strength, lower porosity (both total and in the least porous slice) and greater water-dispersible 'day plus silt' and silt content than the porosity samples with high infiltrability (〉 100mm·hr^-1, n = 2). The porosity samples with low infiltrability showed a trend of lower pH and greater water dispersible clay percentage. Porosity varied within the porosity samples due to the presence of dense clay/silt bands (〈 0.5 mm in width) with relatively few air vesicles. The porosity samples with horizontal slices of low porosity (but large numbers of air vesicles) had low infiltrability, while those without slices of low porosity (and relatively few air vesicles) had high infiltrability. We conclude that the intense crusting and resultant low infiltrability of soils in the Knersvlakte appears to be related to the formation of thin, dense clay/silt bands in the pedoderm.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.106112015CDJXY200008)China Scholarship Council(Grant No.201306710022)
文摘Particle breakage has a significant influence on the stress-strain and strength behavior of rockfill material.A breakage critical state theory(BCST)was proposed to describe the evolution of particle breakage.The breakage critical state line in the breakage critical state theory was correlated with the breakage factor,which was fundamentally different from that of the original critical state theory.A simple elastoplastic constitutive model was developed for rockfill in the frame of BCST.An associated flow rule was adopted in this model.Isotropic,contractive and distortional hardening rules were suggested in view of the particle breakage.It was observed that the proposed model could well represent the complex deformation behaviors of rockfill material,such as the strain hardening,post-peak strain softening,volumetric contraction,volumetric expansion,and particle breakage under different initial confining pressures.
基金supported by the National Natural Science Foundation of China(Grant Nos.51275185 and 51405171)the National Basic Research Program of China("973"Project)(Grant No.2010CB630802-3)+1 种基金the Fundamental Research Funds for the Central Universities(HUST,No0118110621)the Graduate Innovation and Entrepreneurship Fund of Huazhong University of Science and Technology(HUST,No.0109070112)
文摘There has been a growing demand for safety parts with tailored properties in automobile industry.However,the understanding of tribological behavior of press hardening steels(PHS)on the tailored conditions is highly inadequate.The present work aims at creating new knowledge about the tribological characteristics of PHS on the tailored conditions and bridging this existing gap.The paper proposes an improved hot drawing tribo-simulator to simulate the realistic experimental conditions industry.Investigations were carried out on the condition of different initial heating temperatures,tool temperatures,austenitizing temperatures,cooling rates and microstructures.The presented results show that the whole frictional process is divided into three stages for both coated and uncoated steels.The frictional factor changes a lot and the peak value of frictional factor occurs for serious adhesive wear.The frictional factor rises as the tool temperature and austenitizing temperature rise.The surface morphology of tools indicates that the coating adhering to tool gets thicker as the tool temperature increases.With the increase of cooling rate,the frictional factor declines firstly and then rises to some extent.Flat dies with different temperatures are used to form specimens with different microstructures,which also affects the frictional factor and wear.