硬炭因资源丰富、结构稳定及安全性高等优势,已成为钠离子电池常用阳极材料。其中,煤基衍生硬炭受到了广泛的关注。本工作以长焰煤为碳源,硫脲为氮硫源,NaCl为模板,通过两步炭化工艺和杂原子掺杂相结合的方法合成了N和S共掺杂的煤基硬炭...硬炭因资源丰富、结构稳定及安全性高等优势,已成为钠离子电池常用阳极材料。其中,煤基衍生硬炭受到了广泛的关注。本工作以长焰煤为碳源,硫脲为氮硫源,NaCl为模板,通过两步炭化工艺和杂原子掺杂相结合的方法合成了N和S共掺杂的煤基硬炭(NSPC1200)。两步炭化过程在调节碳微晶结构和扩大层间距方面发挥了重要的作用。N和S的共掺杂调节了炭材料的电子结构,赋予其更多的活性位点;此外,引入NaCl作为模板有助于孔结构的构建,有利于电极和电解质之间的接触,从而实现Na+和电子的有效传输。在协同作用下,样品NSPC1200表现出优异的储钠能力,在20 mA g^(−1)电流密度下呈现314.2 mAh g^(−1)的可逆容量。即使在100 mA g^(−1)下循环200次,仍保持224.4 mAh g^(−1)的比容量。这项工作成功实现了策略性调整煤基炭材料微观结构的目标,最终获得了具有优异的电化学性能的硬炭阳极。展开更多
以硬炭为研究对象,考察了不同预嵌锂量硬炭负极对锂离子电容器电化学性能的影响,通过充放电性能测试,分析了常温充放电、倍率性能、循环性能、比能量、比功率、常温充电低温放电以及低温充放电性能,研究结果表明,当负极预嵌锂量截止比...以硬炭为研究对象,考察了不同预嵌锂量硬炭负极对锂离子电容器电化学性能的影响,通过充放电性能测试,分析了常温充放电、倍率性能、循环性能、比能量、比功率、常温充电低温放电以及低温充放电性能,研究结果表明,当负极预嵌锂量截止比容量为300 m Ah/g时,由于提供了稳定的电位和足够的锂离子,锂离子电容器综合电化学性能最佳。展开更多
以石油沥青为原料,通过空气氧化稳定化及炭化方法成功制备出钠离子电池用硬炭负极材料。研究了不同氧化稳定化温度下样品组成、结构的变化,及其对炭化样品形貌、结构和储钠性能的影响。结果表明,空气氧化处理可以引入大量的含氧官能团,...以石油沥青为原料,通过空气氧化稳定化及炭化方法成功制备出钠离子电池用硬炭负极材料。研究了不同氧化稳定化温度下样品组成、结构的变化,及其对炭化样品形貌、结构和储钠性能的影响。结果表明,空气氧化处理可以引入大量的含氧官能团,诱导脱氢缩合和氧化交联反应的发生,使石油沥青发生由热塑性向热固性的转化。空气氧化稳定化处理有效地阻碍了沥青在高温炭化中固有的石墨化倾向,使碳层堆叠变得无序、同时产生更多的缺陷位。电化学测试结果表明,在100 mA g^(−1)的电流密度下,与直接炭化样品PDC-1400相比,350℃氧化稳定化、1400℃炭化的硬炭样品o-PDC-350-1400的比容量提升约1.8倍(达到276.8 mAh g^(−1));首效提高22%(达到73.38%)。样品o-PDC-350-1400循环200圈后,充电比容量达170.2 mAh g^(−1),具有良好的循环稳定性。展开更多
报道了以商品化硬炭作为钠离子电池负极材料的研究。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)以及氮气吸脱附测试(BET)对其结构进行表征;利用恒电流充放电、循环伏安和阻抗谱技术对电化学性能进行了测试。结果表明:硬炭呈现无序乱...报道了以商品化硬炭作为钠离子电池负极材料的研究。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)以及氮气吸脱附测试(BET)对其结构进行表征;利用恒电流充放电、循环伏安和阻抗谱技术对电化学性能进行了测试。结果表明:硬炭呈现无序乱层多孔结构,比表面积为2.2 m2/g,层间距远大于石墨负极材料(0.38 nm)。该硬炭材料对钠离子电池表现出较好的嵌入/脱嵌钠的容量、倍率性能和良好的循环性能。在20 m A/g电流密度下的首次嵌钠比容量为361.7 m Ah/g,脱钠比容量为259.8 m Ah/g,首次效率为72%;在40 m A/g电流密度下循环100次的比容量保持在250m Ah/g,容量保持率99%,是一种具有应用潜力的储钠负极材料。展开更多
文摘硬炭因资源丰富、结构稳定及安全性高等优势,已成为钠离子电池常用阳极材料。其中,煤基衍生硬炭受到了广泛的关注。本工作以长焰煤为碳源,硫脲为氮硫源,NaCl为模板,通过两步炭化工艺和杂原子掺杂相结合的方法合成了N和S共掺杂的煤基硬炭(NSPC1200)。两步炭化过程在调节碳微晶结构和扩大层间距方面发挥了重要的作用。N和S的共掺杂调节了炭材料的电子结构,赋予其更多的活性位点;此外,引入NaCl作为模板有助于孔结构的构建,有利于电极和电解质之间的接触,从而实现Na+和电子的有效传输。在协同作用下,样品NSPC1200表现出优异的储钠能力,在20 mA g^(−1)电流密度下呈现314.2 mAh g^(−1)的可逆容量。即使在100 mA g^(−1)下循环200次,仍保持224.4 mAh g^(−1)的比容量。这项工作成功实现了策略性调整煤基炭材料微观结构的目标,最终获得了具有优异的电化学性能的硬炭阳极。
文摘以硬炭为研究对象,考察了不同预嵌锂量硬炭负极对锂离子电容器电化学性能的影响,通过充放电性能测试,分析了常温充放电、倍率性能、循环性能、比能量、比功率、常温充电低温放电以及低温充放电性能,研究结果表明,当负极预嵌锂量截止比容量为300 m Ah/g时,由于提供了稳定的电位和足够的锂离子,锂离子电容器综合电化学性能最佳。
文摘以石油沥青为原料,通过空气氧化稳定化及炭化方法成功制备出钠离子电池用硬炭负极材料。研究了不同氧化稳定化温度下样品组成、结构的变化,及其对炭化样品形貌、结构和储钠性能的影响。结果表明,空气氧化处理可以引入大量的含氧官能团,诱导脱氢缩合和氧化交联反应的发生,使石油沥青发生由热塑性向热固性的转化。空气氧化稳定化处理有效地阻碍了沥青在高温炭化中固有的石墨化倾向,使碳层堆叠变得无序、同时产生更多的缺陷位。电化学测试结果表明,在100 mA g^(−1)的电流密度下,与直接炭化样品PDC-1400相比,350℃氧化稳定化、1400℃炭化的硬炭样品o-PDC-350-1400的比容量提升约1.8倍(达到276.8 mAh g^(−1));首效提高22%(达到73.38%)。样品o-PDC-350-1400循环200圈后,充电比容量达170.2 mAh g^(−1),具有良好的循环稳定性。
文摘报道了以商品化硬炭作为钠离子电池负极材料的研究。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)以及氮气吸脱附测试(BET)对其结构进行表征;利用恒电流充放电、循环伏安和阻抗谱技术对电化学性能进行了测试。结果表明:硬炭呈现无序乱层多孔结构,比表面积为2.2 m2/g,层间距远大于石墨负极材料(0.38 nm)。该硬炭材料对钠离子电池表现出较好的嵌入/脱嵌钠的容量、倍率性能和良好的循环性能。在20 m A/g电流密度下的首次嵌钠比容量为361.7 m Ah/g,脱钠比容量为259.8 m Ah/g,首次效率为72%;在40 m A/g电流密度下循环100次的比容量保持在250m Ah/g,容量保持率99%,是一种具有应用潜力的储钠负极材料。