In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cem...In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions.展开更多
The necessity and feasibility of an expert system for carbide-tool utilization are analyzed and a practical system named CUES(carbide-tool utilization expert system ) is developed and realized. The system concept, mod...The necessity and feasibility of an expert system for carbide-tool utilization are analyzed and a practical system named CUES(carbide-tool utilization expert system ) is developed and realized. The system concept, module structure, data management, inference strategy and the interface design of the system are discussed in.detail. The system would be useful not only for the preparation of tool bank of FMS or CIMS, but the for the proper application of cemented carbide tools in conventional machining Processes.展开更多
Through systematically theoretical analysis and experimental research,the failure mechanism,of CVD(chemical vapor deposition) coated carbide tools in wear and fracture conditions was studied.On the basis of mechanism ...Through systematically theoretical analysis and experimental research,the failure mechanism,of CVD(chemical vapor deposition) coated carbide tools in wear and fracture conditions was studied.On the basis of mechanism analysis,the specific suitability of the coated tools for cutting conditions was revealed and clarified.展开更多
Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dr...Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dry milling experiment and FEM simulation to study the machinability of CGI and wear behaviour of tools. The experimental and FEM simulation results show that coated tool has great advantage in dry milling of CGI. SEM and EDS analysis of tool wear indicate the wear morphology and wear mechanism. Adhesive wear is the main mechanism to cause un- coated tool wear, while abrasive wear and delamination wear are the main mechanism to cause coated tool wear. Stress and temperature distribution in FEM simulation help to understand the wear mechanism including the reason for coat- ing peeled off.展开更多
The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain s...The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.展开更多
Nano/microcrystalline composite diamond films were deposited on the holes of WC-6%Co drawing dies by a two-step procedure using alternative carbon sources, i.e., methane for the microcrystalline diamond(MCD) layer a...Nano/microcrystalline composite diamond films were deposited on the holes of WC-6%Co drawing dies by a two-step procedure using alternative carbon sources, i.e., methane for the microcrystalline diamond(MCD) layer and acetone for the nanocrystalline diamond(NCD) layer. Moreover, the monolayer methane-MCD and acetone-NCD coated drawing dies were fabricated as comparisons. The adhesion and wear rates of the diamond coated drawing dies were also tested by an inner hole polishing apparatus. Compared with mono-layer diamond coated drawing die, the composite diamond coated one exhibits better comprehensive performance, including higher adhesive strength and better wear resistance than the NCD one, and smoother surface(Ra=65.3 nm) than the MCD one(Ra=95.6 nm) after polishing at the same time. Compared with the NCD coated drawing die, the working lifetime of the composite diamond coated one is increased by nearly 20 times.展开更多
Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytica...Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 rn/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247.展开更多
Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on ho...Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on hot forging performances were investigated using a servo press with ram motion control. Three types of the die materials; (a) tool steel for hot working, (b) cemented tungsten carbide with high thermal conductivity and (c) TiCN composite with low thermal conductivity were compared. In hot upsetting of a chrome steel workpiece, the TiCN composite die was confirmed to reduce the forging load by approximately 20% at slow forging speed. This is because the die with low thermal conductivity could prevent the workpiece from rapid cooling induced by heat transfer at the die-workpiece interface. In addition, the material flow of the workpiece to a die cavity was improved. Furthermore, the wear depth/wear coefficient of the TiCN composite was lower than that of the tool steel and the cemented tungsten carbide in the numerical analysis of wear due to the combination of low thermal conductivity and high hardness.展开更多
文摘In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions.
文摘The necessity and feasibility of an expert system for carbide-tool utilization are analyzed and a practical system named CUES(carbide-tool utilization expert system ) is developed and realized. The system concept, module structure, data management, inference strategy and the interface design of the system are discussed in.detail. The system would be useful not only for the preparation of tool bank of FMS or CIMS, but the for the proper application of cemented carbide tools in conventional machining Processes.
文摘Through systematically theoretical analysis and experimental research,the failure mechanism,of CVD(chemical vapor deposition) coated carbide tools in wear and fracture conditions was studied.On the basis of mechanism analysis,the specific suitability of the coated tools for cutting conditions was revealed and clarified.
基金Supported by National Natural Science Foundation of China (No. 50935001 and No. U0734007)Important National Science and Technology Specific Projects of China (No.,20011ZX04015-031)+1 种基金National High Technology Research and Development Program of China("863"Program, No. 2009AA04Z150)Major State Basic Research Development Program of China ("973"Program, No. 2010CB731703 and No. 2011CB706804)
文摘Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dry milling experiment and FEM simulation to study the machinability of CGI and wear behaviour of tools. The experimental and FEM simulation results show that coated tool has great advantage in dry milling of CGI. SEM and EDS analysis of tool wear indicate the wear morphology and wear mechanism. Adhesive wear is the main mechanism to cause un- coated tool wear, while abrasive wear and delamination wear are the main mechanism to cause coated tool wear. Stress and temperature distribution in FEM simulation help to understand the wear mechanism including the reason for coat- ing peeled off.
基金supported by the National Natural Science Foundation of China(No.51275227)the Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX11_0175)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST201326)
文摘The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.
基金Project(51275302) supported by the National Natural Science Foundation of China
文摘Nano/microcrystalline composite diamond films were deposited on the holes of WC-6%Co drawing dies by a two-step procedure using alternative carbon sources, i.e., methane for the microcrystalline diamond(MCD) layer and acetone for the nanocrystalline diamond(NCD) layer. Moreover, the monolayer methane-MCD and acetone-NCD coated drawing dies were fabricated as comparisons. The adhesion and wear rates of the diamond coated drawing dies were also tested by an inner hole polishing apparatus. Compared with mono-layer diamond coated drawing die, the composite diamond coated one exhibits better comprehensive performance, including higher adhesive strength and better wear resistance than the NCD one, and smoother surface(Ra=65.3 nm) than the MCD one(Ra=95.6 nm) after polishing at the same time. Compared with the NCD coated drawing die, the working lifetime of the composite diamond coated one is increased by nearly 20 times.
文摘Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 rn/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247.
文摘Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on hot forging performances were investigated using a servo press with ram motion control. Three types of the die materials; (a) tool steel for hot working, (b) cemented tungsten carbide with high thermal conductivity and (c) TiCN composite with low thermal conductivity were compared. In hot upsetting of a chrome steel workpiece, the TiCN composite die was confirmed to reduce the forging load by approximately 20% at slow forging speed. This is because the die with low thermal conductivity could prevent the workpiece from rapid cooling induced by heat transfer at the die-workpiece interface. In addition, the material flow of the workpiece to a die cavity was improved. Furthermore, the wear depth/wear coefficient of the TiCN composite was lower than that of the tool steel and the cemented tungsten carbide in the numerical analysis of wear due to the combination of low thermal conductivity and high hardness.