The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in...The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.展开更多
In this study,orthogonal experiments were conducted to investigate the influence of expandable graphite(EG),dimethyl methylphosphonate(DMMP),triethanolamine(TEA),and isocyanate content on the compressive and bonding s...In this study,orthogonal experiments were conducted to investigate the influence of expandable graphite(EG),dimethyl methylphosphonate(DMMP),triethanolamine(TEA),and isocyanate content on the compressive and bonding strengths,oxygen index,and fluidity of rigid polyurethane foam(RPUF).The results revealed that EG significantly increased the oxygen index of RPUF,enlarged the diameter of foam cells,and decreased the cell-closed content in foam;thus,leading to a pressure drop in RPUF.However,excessive EG was capable of reducing the fluidity of polyurethane slurry.TEA exhibited significant influence on the compressive strength of RPUF,which dropped initially,and then increased.DMMP had a remarkable effect on the flame retardant property and compressive strength of RPUF.Compressive strength of RPUF initially displayed an increase followed by a decrease with increasing dosage of DMMP,and achieved the maximum value at DMMP dosage of 4%.DMMP could effectively reduce the diameter of RPUF cells leading to an increase in the percentage of close area in foam.DMMP displayed the flame-retardation effects mainly in the gas phase leading to a significant enhancement in the oxygen index of RPUF.Moreover,the compressive strength and bonding strength of RPUF decrease significantly with the increase of isocyanate content due to the increased blowing efficiency by the CO_2.The oxygen index and flowing length of foam increased with the increase in isocyanate dosage.展开更多
3,4-Dihydroxy-2-butanone 4-phosphate (DHBP) and GTP are the precursors for riboflavin biosynthesis. In this research, improving the precursor supply for riboflavin production was attempted by overexpressing ribB and...3,4-Dihydroxy-2-butanone 4-phosphate (DHBP) and GTP are the precursors for riboflavin biosynthesis. In this research, improving the precursor supply for riboflavin production was attempted by overexpressing ribB and engineering purine pathway in a riboflavin-producing Escherichia colt strain. Initially, ribB gene was overexpressed to increase the flux from ribulose 5-phosphate (Ru-5-P) to DHBP. Then ndk and grnk genes were overexpressed to enhance GTP supply. Subsequently, a R419L mutation was introduced into purA to reduce the flux from IMP to AMP. Finally, co-overexpression of mutant purF and prs genes further increased riboflavin production. The final strain RF18S produced 387.6 mg riboflavin · L-1 with a yield of 44.8 mg riboflavin per gram glucose in shake-flask fermentations. The final titer and yield were 72.2% and 55.6% higher than those of RF01S, respectively. It was concluded that simultaneously engineering the DHBP synthase and GTP biosynthetic pathway by rational metabolic engineering can efficiently boost riboflavin production in E. coll.展开更多
文摘The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.
基金supported by the National Natural Science Foundation of China(No.51304027)China Postdoctoral Science Foundation(2014M560567 and 2015T80730)+4 种基金Shandong Province Science and Technology Development Plan(2014GSF120012)the State Key Program of Coal Joint Funds of National Natural Science Foundation of China(Nos.51134020 and U1261205)Shandong Province Natural Science Foundation(No.ZR2011EL036)the Doctoral Scientific Research Foundation of Binzhou University(No.2013Y06)the Key Technology Projects for Preventing Major Accident of National Security State Administration of Work Safety
文摘In this study,orthogonal experiments were conducted to investigate the influence of expandable graphite(EG),dimethyl methylphosphonate(DMMP),triethanolamine(TEA),and isocyanate content on the compressive and bonding strengths,oxygen index,and fluidity of rigid polyurethane foam(RPUF).The results revealed that EG significantly increased the oxygen index of RPUF,enlarged the diameter of foam cells,and decreased the cell-closed content in foam;thus,leading to a pressure drop in RPUF.However,excessive EG was capable of reducing the fluidity of polyurethane slurry.TEA exhibited significant influence on the compressive strength of RPUF,which dropped initially,and then increased.DMMP had a remarkable effect on the flame retardant property and compressive strength of RPUF.Compressive strength of RPUF initially displayed an increase followed by a decrease with increasing dosage of DMMP,and achieved the maximum value at DMMP dosage of 4%.DMMP could effectively reduce the diameter of RPUF cells leading to an increase in the percentage of close area in foam.DMMP displayed the flame-retardation effects mainly in the gas phase leading to a significant enhancement in the oxygen index of RPUF.Moreover,the compressive strength and bonding strength of RPUF decrease significantly with the increase of isocyanate content due to the increased blowing efficiency by the CO_2.The oxygen index and flowing length of foam increased with the increase in isocyanate dosage.
基金supported by National High-tech R&D Program of China [2012AA02A702, 2012AA022103]
文摘3,4-Dihydroxy-2-butanone 4-phosphate (DHBP) and GTP are the precursors for riboflavin biosynthesis. In this research, improving the precursor supply for riboflavin production was attempted by overexpressing ribB and engineering purine pathway in a riboflavin-producing Escherichia colt strain. Initially, ribB gene was overexpressed to increase the flux from ribulose 5-phosphate (Ru-5-P) to DHBP. Then ndk and grnk genes were overexpressed to enhance GTP supply. Subsequently, a R419L mutation was introduced into purA to reduce the flux from IMP to AMP. Finally, co-overexpression of mutant purF and prs genes further increased riboflavin production. The final strain RF18S produced 387.6 mg riboflavin · L-1 with a yield of 44.8 mg riboflavin per gram glucose in shake-flask fermentations. The final titer and yield were 72.2% and 55.6% higher than those of RF01S, respectively. It was concluded that simultaneously engineering the DHBP synthase and GTP biosynthetic pathway by rational metabolic engineering can efficiently boost riboflavin production in E. coll.