The complexity of an open pit production scheduling problem is increased by grade uncertainty. A method is presented to calculate the cost of uncertainty in a production schedule based on deviations from the target pr...The complexity of an open pit production scheduling problem is increased by grade uncertainty. A method is presented to calculate the cost of uncertainty in a production schedule based on deviations from the target production. A mixed integer linear programming algorithm is formulated to find the min- ing sequence of blocks from a predefined pit shell and their respective destinations, with two objectives: to maximize the net present value of the operation and to minimize the cost of uncertainty. An efficient clustering technique reduces the number of var/ables to make the problem tractable. Also, the parameters that control the importance of uncertainty in the optimization problem are studied. The minimum annual mining capacity in presence of grade uncertainty is assessed. The method is illustrated with an oil sand deposit in northern Alberta.展开更多
Linear programming models have been widely used in input-output analysis for analyzing the interdependence of industries in economics and in environmental science.In these applications,some of the entries of the coeff...Linear programming models have been widely used in input-output analysis for analyzing the interdependence of industries in economics and in environmental science.In these applications,some of the entries of the coefficient matrix cannot be measured physically or there exists sampling errors.However,the coefficient matrix can often be low-rank.We characterize the robust counterpart of these types of linear programming problems with uncertainty set described by the nuclear norm.Simulations for the input-output analysis show that the new paradigm can be helpful.展开更多
文摘The complexity of an open pit production scheduling problem is increased by grade uncertainty. A method is presented to calculate the cost of uncertainty in a production schedule based on deviations from the target production. A mixed integer linear programming algorithm is formulated to find the min- ing sequence of blocks from a predefined pit shell and their respective destinations, with two objectives: to maximize the net present value of the operation and to minimize the cost of uncertainty. An efficient clustering technique reduces the number of var/ables to make the problem tractable. Also, the parameters that control the importance of uncertainty in the optimization problem are studied. The minimum annual mining capacity in presence of grade uncertainty is assessed. The method is illustrated with an oil sand deposit in northern Alberta.
基金supported by National Social Science Foundation of China (Grant No. 11BGL053)National Natural Science Foundation of China (Grant Nos. 11101434,10971122 and 11101274)+4 种基金Scientific and Technological Projects of Shandong Province (Grant No. 2009GG10001012)Excellent Young Scientist Foundation of Shandong Province (Grant No. 2010BSE06047)the Doctoral Program of Higher Education of China (Grant No. 20110073120069)Shandong Province Natural Science Foundation (Grant No. ZR2012GQ004)Independent Innovation Foundation of Shandong University (Grant No. 12120083399170)
文摘Linear programming models have been widely used in input-output analysis for analyzing the interdependence of industries in economics and in environmental science.In these applications,some of the entries of the coefficient matrix cannot be measured physically or there exists sampling errors.However,the coefficient matrix can often be low-rank.We characterize the robust counterpart of these types of linear programming problems with uncertainty set described by the nuclear norm.Simulations for the input-output analysis show that the new paradigm can be helpful.