To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the ...To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the uncertainty analysis. The surrogate model is constructed by using the Latin Hypercube design and the Kriging model. The random parameters are used to account for the small manufacturing errors and the variations of operating conditions. Based on the surrogate model, an uncertainty analysis approach, called the Monte Carlo simulation, is used to compute the mean value and the variance of the predicated performance. The robust optimization for aerodynamic design is formulated, and solved by the genetic algorithm. And then, an airfoil optimization problem is used to test the proposed procedure. Results show that the optimal solutions obtained from the uncertainty-based optimization formulation are less sensitive to uncertainties. And the design constraints are still satisfied under the uncertainties.展开更多
According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution i...According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.展开更多
The Heisenberg commutation relation, QP P Q = ihI, is the most fundamental relation of quantum mechanics. Heisenberg's encoding of the ad-hoc quantum rules in this simple relation embodies the character-istic inde...The Heisenberg commutation relation, QP P Q = ihI, is the most fundamental relation of quantum mechanics. Heisenberg's encoding of the ad-hoc quantum rules in this simple relation embodies the character-istic indeterminacy and uncertainty of quantum theory. Representations of the Heisenberg relation in various mathematical structures are discussed. In particular, after a discussion of unbounded operators affiliated with finite von Neumann algebras, especially, factors of Type Ⅱ1 , we answer the question of whether or not the Heisenberg relation can be realized with unbounded self-adjoint operators in the algebra of operators affiliated with a factor of type Ⅱ1 .展开更多
This paper investigates the controllability problem of time-variant linear stochastic controlsystems.A sufficient and necessary condition is established for stochastic exact controllability,whichprovides a useful alge...This paper investigates the controllability problem of time-variant linear stochastic controlsystems.A sufficient and necessary condition is established for stochastic exact controllability,whichprovides a useful algebraic criterion for stochastic control systems.Furthermore,when the stochasticsystems degenerate to deterministic systems,the algebraic criterion becomes the counterpart for thecomplete controllability of deterministic control systems.展开更多
As structure buckling problems easily arise when supercavitating projectiles operate with high underwater velocity, it is necessary to perform structure buckling reliability analysis. Now it is widely known that proba...As structure buckling problems easily arise when supercavitating projectiles operate with high underwater velocity, it is necessary to perform structure buckling reliability analysis. Now it is widely known that probabilistic and non-probabilistic uncertain information exists in engineering analysis. Based on reliability comprehensive index of multi-ellipsoid convex set, probabilistic uncertain information is added and transferred into non-probabilistic interval variable. The hybrid reliability is calculated by a combined method of modified limit step length iteration algorithm(MLSLIA) and Monte-Carlo method. The results of engineering examples show that the convergence of MLSLIA is better than that of limit step length iteration algorithm(LSLIA). Structure buckling hybrid reliability increases with the increase of ratio of base diameter to cavitator diameter, and decreases with the increase of initial launch velocity. Also the changes of uncertain degree of projectile velocity and cavitator drag coefficient affect structure buckling hybrid reliability index obviously. Therefore, uncertain degree of projectile velocity and cavitator drag coefficient should be controlled in project for high structure buckling reliability.展开更多
文摘To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the uncertainty analysis. The surrogate model is constructed by using the Latin Hypercube design and the Kriging model. The random parameters are used to account for the small manufacturing errors and the variations of operating conditions. Based on the surrogate model, an uncertainty analysis approach, called the Monte Carlo simulation, is used to compute the mean value and the variance of the predicated performance. The robust optimization for aerodynamic design is formulated, and solved by the genetic algorithm. And then, an airfoil optimization problem is used to test the proposed procedure. Results show that the optimal solutions obtained from the uncertainty-based optimization formulation are less sensitive to uncertainties. And the design constraints are still satisfied under the uncertainties.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272346)the National Basic Research Program of China("973"Project)(Grant No.2013CB733100)
文摘According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.
文摘The Heisenberg commutation relation, QP P Q = ihI, is the most fundamental relation of quantum mechanics. Heisenberg's encoding of the ad-hoc quantum rules in this simple relation embodies the character-istic indeterminacy and uncertainty of quantum theory. Representations of the Heisenberg relation in various mathematical structures are discussed. In particular, after a discussion of unbounded operators affiliated with finite von Neumann algebras, especially, factors of Type Ⅱ1 , we answer the question of whether or not the Heisenberg relation can be realized with unbounded self-adjoint operators in the algebra of operators affiliated with a factor of type Ⅱ1 .
基金supported by the National Natural Science Foundation under Grant Nos.60904029 and 60704002the State Key Laboratory under Grant No.RCS2008ZT002
文摘This paper investigates the controllability problem of time-variant linear stochastic controlsystems.A sufficient and necessary condition is established for stochastic exact controllability,whichprovides a useful algebraic criterion for stochastic control systems.Furthermore,when the stochasticsystems degenerate to deterministic systems,the algebraic criterion becomes the counterpart for thecomplete controllability of deterministic control systems.
基金the National Natural Science Foundation of China(No.51305421)the National Defense Technology Basis Research Project(No.JSZL2014130B005)the Development of Science and Technology Project of Jilin Province(No.20140520137JH)
文摘As structure buckling problems easily arise when supercavitating projectiles operate with high underwater velocity, it is necessary to perform structure buckling reliability analysis. Now it is widely known that probabilistic and non-probabilistic uncertain information exists in engineering analysis. Based on reliability comprehensive index of multi-ellipsoid convex set, probabilistic uncertain information is added and transferred into non-probabilistic interval variable. The hybrid reliability is calculated by a combined method of modified limit step length iteration algorithm(MLSLIA) and Monte-Carlo method. The results of engineering examples show that the convergence of MLSLIA is better than that of limit step length iteration algorithm(LSLIA). Structure buckling hybrid reliability increases with the increase of ratio of base diameter to cavitator diameter, and decreases with the increase of initial launch velocity. Also the changes of uncertain degree of projectile velocity and cavitator drag coefficient affect structure buckling hybrid reliability index obviously. Therefore, uncertain degree of projectile velocity and cavitator drag coefficient should be controlled in project for high structure buckling reliability.