利用最新的CFSR(Climate Forecast System Reanalysis)再分析及观测的降水和地表气温资料驱动陆面水文耦合模式CLHMS(Coupled Landsurface and Hydrologic Model System),对淮河流域1980-2003年共24年的水文水循环过程进行了模拟...利用最新的CFSR(Climate Forecast System Reanalysis)再分析及观测的降水和地表气温资料驱动陆面水文耦合模式CLHMS(Coupled Landsurface and Hydrologic Model System),对淮河流域1980-2003年共24年的水文水循环过程进行了模拟,系统评估了CLHMS对淮河流域水文过程的模拟能力及其不确定性。分析结果表明,CLHMS模式对淮河流域水文过程具有良好的模拟能力,模式尤其对湿润年份流域的水量平衡以及河道流量的季节、年际变化具有很强的模拟能力,而对降水偏少的干旱年份,模式模拟的河道流量通常会高于观测实况,与实况间存在着一定的偏差,而这也是导致CLHMS对流域水文过程模拟能力存在显著年代际差异的主要原因。基于三组不同降水强迫的流域水文过程模拟结果比较表明,降水驱动资料准确与否是陆面水文模拟最主要的不确定性来源之一,正是由于CFSR再分析降水与观测降水之间存在较大的差异,从而导致CFSR降水驱动下模式模拟的淮河流域河道流量与观测存在较大的偏差,其模拟性能相对较差。进一步分析还表明,可以保持较强降水日变化的时间解集方法,也是保证合理模拟流域水文过程的重要因素。展开更多
为提高水文模型参数识别的可靠性,融合自回归模型与马尔可夫链-蒙特卡洛方法(auto regressive model based modified Markov Chain-Monte Carlo,AR-MCMC),利用自回归模型刻画残差序列的自相关性,修正MCMC方法中的残差协方差矩阵。通过...为提高水文模型参数识别的可靠性,融合自回归模型与马尔可夫链-蒙特卡洛方法(auto regressive model based modified Markov Chain-Monte Carlo,AR-MCMC),利用自回归模型刻画残差序列的自相关性,修正MCMC方法中的残差协方差矩阵。通过新疆提孜那甫河流域融雪径流模型(SRM)的案例分析发现:融雪径流模拟的残差序列具有显著的自相关性;修正残差协方差矩阵后,边缘似然值更大;综合考虑多项评价指标,AR-MCMC方法在识别期与验证期推求的预测区间均优于MCMC方法;对比2种方法在识别期与验证期的纳什系数,采用AR-MCMC方法依次为0.86、0.89,而采用MCMC方法依次为0.84、0.87,即AR-MCMC方法获取的模型拟合效果更好。分析结果表明,相对于传统的MCMC方法,AR-MCMC方法能够更好地对研究区融雪径流过程进行模拟预测。展开更多
Taking variability and uncertainty involved in performance prediction into account, in order to make the prediction reliable and meaningful, a distribution-based method is developed to predict future PSI. This method,...Taking variability and uncertainty involved in performance prediction into account, in order to make the prediction reliable and meaningful, a distribution-based method is developed to predict future PSI. This method, which is based on the AASHTO pavement performance model, treats predictor variables as random variables with certain probability distributions and obtains the distribution of future PSI through the method of Monte-Carlo simulation. A computer program PERFORM using Monte Carlo simulation is developed to implement the numerical computation. Simulation results based on pavement and traffic parameters show that traffic, surface layer material property, and initial pavement performance are the most significant factors affecting pavement performance. Once the distribution of future PSI is determined, statistics such as the mean and the variance of future PSI are readily available.展开更多
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc...Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).展开更多
In this study, the dependence of dust budgets on dust emission schemes is investigated through the simulation of dust storm events, which occurred during 14–25 March 2002, over East Asia, by the Weather Research and ...In this study, the dependence of dust budgets on dust emission schemes is investigated through the simulation of dust storm events, which occurred during 14–25 March 2002, over East Asia, by the Weather Research and Forecasting with Chemistry(WRF/Chem) model coupled with six dust emission schemes. Generally, this model can reasonably reproduce the spatial distribution of surface dust concentration; however, the simulated total dust budget differs significantly with different emission schemes. Moreover, uncertainties in the simulated dust budget vary among regions. It is suggested that the dust emission scheme affects the regional dust budget directly through its impact on the total emitted dust amount; however, the inflow and outflow of dust aerosols simulated by different schemes within a region also depend on the geographical location of the dust emission region. Furthermore, the size distribution of dust particles for a specific dust emission scheme has proven to be important for dust budget calculation due to the dependence of dust deposition amount on dust size distribution.展开更多
TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to th...TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to the drainage outlet;thus DEM plays an important role in TOPMODEL.This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL.In this paper,the effects were evaluated mainly from quantitative and qualitative aspects.Firstly,DEM uncertainty was simulated by using the Monte Carlo method,and for every DEM realization,the topographic index and distance to the drainage outlet were extracted.Secondly,the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rain-storm-flood events,and four evaluation indices,such as Nash and Sutcliffe efficiency criterion(EFF),sum of squared residuals over all time steps(SSE),sum of squared log residuals over all time steps(SLE) and sum of absolute errors over all time steps(SAE) were recorded.Thirdly,these four evaluation indices were analyzed in statistical manner(minimum,maximum,range,standard deviation and mean value),and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed.Finally,the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases.Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model’s application.This can be explained by:1) TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet;2) the distri-bution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.展开更多
As non-renewable natural resources, rare minerals' are extensively used as important raw materials in strategic emerging industries. As global consumption continues to increase over recent years, international compet...As non-renewable natural resources, rare minerals' are extensively used as important raw materials in strategic emerging industries. As global consumption continues to increase over recent years, international competition in the area of rare mineral minerals has been escalating. On the basis' of the identification of 22 rare mineral resources of six categories and analysis of their applications in strategic emerging industries, this paper has adopted a three-factor analytical framework and designed nine indicators from the three dimensions of supply risks, environmental impacts and economic impacts of restricted supply to conduct a quantitative evaluation of the strategic significance of rare mineral resources. The result indicates that the strategic significance of platinum-group metals is the highest and the strategic significance of cesium is the lowest. In order to further increase the reliability of evaluation results, this paper has employed the Monte Carlo simulation for uncertainty analysis'. Simulation result demonstrates that after the impacts" of individual indicators have been taken into account, the results' of this paper's evaluation of 22 rare mineral resources remain valid. Given the growing significance of rare mineral resources to strategic emerging industries, China should formulate a national strategy on rare mineral resources', strive to inerease the supply security of key raw materials for strategic emerging industries and achieve the sustainable development and utilization of rare mineral resources for national security of natural resources.展开更多
In this paper, we conduct research on the cause and dynamics of seawater intrusion in the Laizhou bay. To consider modelling the Laizhou bay, we should then take the listed tools into consideration. In actual engineer...In this paper, we conduct research on the cause and dynamics of seawater intrusion in the Laizhou bay. To consider modelling the Laizhou bay, we should then take the listed tools into consideration. In actual engineering, wave is a complicated stochastic process. If the numerical value of wave model is a little too large, the wave attenuation should be considered sufficiently, such as wave refraction caused by terrain change, wave attenuation due to submarine friction, wave into the very shallow waters of the broken and small wind area. We integrate the current conition of the Laizhou bay and the further model the seawater intrusion steps. The uncertainty research of ground water solute migration is at present a ground water research area quite popular topic, but the seawater intrusion is the variable density class solute migration issue, applies the uncertainty analysis of seawater intrusion simulation also to have certain difficulty the existing research results. In the future, more simulation will be down to verify the effectiveness.展开更多
文摘利用最新的CFSR(Climate Forecast System Reanalysis)再分析及观测的降水和地表气温资料驱动陆面水文耦合模式CLHMS(Coupled Landsurface and Hydrologic Model System),对淮河流域1980-2003年共24年的水文水循环过程进行了模拟,系统评估了CLHMS对淮河流域水文过程的模拟能力及其不确定性。分析结果表明,CLHMS模式对淮河流域水文过程具有良好的模拟能力,模式尤其对湿润年份流域的水量平衡以及河道流量的季节、年际变化具有很强的模拟能力,而对降水偏少的干旱年份,模式模拟的河道流量通常会高于观测实况,与实况间存在着一定的偏差,而这也是导致CLHMS对流域水文过程模拟能力存在显著年代际差异的主要原因。基于三组不同降水强迫的流域水文过程模拟结果比较表明,降水驱动资料准确与否是陆面水文模拟最主要的不确定性来源之一,正是由于CFSR再分析降水与观测降水之间存在较大的差异,从而导致CFSR降水驱动下模式模拟的淮河流域河道流量与观测存在较大的偏差,其模拟性能相对较差。进一步分析还表明,可以保持较强降水日变化的时间解集方法,也是保证合理模拟流域水文过程的重要因素。
文摘为提高水文模型参数识别的可靠性,融合自回归模型与马尔可夫链-蒙特卡洛方法(auto regressive model based modified Markov Chain-Monte Carlo,AR-MCMC),利用自回归模型刻画残差序列的自相关性,修正MCMC方法中的残差协方差矩阵。通过新疆提孜那甫河流域融雪径流模型(SRM)的案例分析发现:融雪径流模拟的残差序列具有显著的自相关性;修正残差协方差矩阵后,边缘似然值更大;综合考虑多项评价指标,AR-MCMC方法在识别期与验证期推求的预测区间均优于MCMC方法;对比2种方法在识别期与验证期的纳什系数,采用AR-MCMC方法依次为0.86、0.89,而采用MCMC方法依次为0.84、0.87,即AR-MCMC方法获取的模型拟合效果更好。分析结果表明,相对于传统的MCMC方法,AR-MCMC方法能够更好地对研究区融雪径流过程进行模拟预测。
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552)the American Chemical Society Petroleum Research Foundation(No. PRF-44468-G9 )+2 种基金Chang Jiang Scholars Program,the Fok Ying-Tong Education Foundation (No. 114024 )the Natural Science Foundation of Jiangsu Province(No. SBK200910046 )the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘Taking variability and uncertainty involved in performance prediction into account, in order to make the prediction reliable and meaningful, a distribution-based method is developed to predict future PSI. This method, which is based on the AASHTO pavement performance model, treats predictor variables as random variables with certain probability distributions and obtains the distribution of future PSI through the method of Monte-Carlo simulation. A computer program PERFORM using Monte Carlo simulation is developed to implement the numerical computation. Simulation results based on pavement and traffic parameters show that traffic, surface layer material property, and initial pavement performance are the most significant factors affecting pavement performance. Once the distribution of future PSI is determined, statistics such as the mean and the variance of future PSI are readily available.
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41375104)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).
基金jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA05110200)the International Science and Technology Cooperation Program of China(2011DFG23450)
文摘In this study, the dependence of dust budgets on dust emission schemes is investigated through the simulation of dust storm events, which occurred during 14–25 March 2002, over East Asia, by the Weather Research and Forecasting with Chemistry(WRF/Chem) model coupled with six dust emission schemes. Generally, this model can reasonably reproduce the spatial distribution of surface dust concentration; however, the simulated total dust budget differs significantly with different emission schemes. Moreover, uncertainties in the simulated dust budget vary among regions. It is suggested that the dust emission scheme affects the regional dust budget directly through its impact on the total emitted dust amount; however, the inflow and outflow of dust aerosols simulated by different schemes within a region also depend on the geographical location of the dust emission region. Furthermore, the size distribution of dust particles for a specific dust emission scheme has proven to be important for dust budget calculation due to the dependence of dust deposition amount on dust size distribution.
基金Under the auspices of the National Natural Science Foundation of China (No. 40171015)
文摘TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to the drainage outlet;thus DEM plays an important role in TOPMODEL.This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL.In this paper,the effects were evaluated mainly from quantitative and qualitative aspects.Firstly,DEM uncertainty was simulated by using the Monte Carlo method,and for every DEM realization,the topographic index and distance to the drainage outlet were extracted.Secondly,the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rain-storm-flood events,and four evaluation indices,such as Nash and Sutcliffe efficiency criterion(EFF),sum of squared residuals over all time steps(SSE),sum of squared log residuals over all time steps(SLE) and sum of absolute errors over all time steps(SAE) were recorded.Thirdly,these four evaluation indices were analyzed in statistical manner(minimum,maximum,range,standard deviation and mean value),and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed.Finally,the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases.Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model’s application.This can be explained by:1) TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet;2) the distri-bution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.
基金Innovation Project of Chinese Academy of Social Sciences(Grant No.SKGJCX2013-04)Key Program of National Social Sciences Foundation of China(Grant No.13&ZD169)Young Scientists Fund of National Natural Science Foundation of China(Grant No.71203232)
文摘As non-renewable natural resources, rare minerals' are extensively used as important raw materials in strategic emerging industries. As global consumption continues to increase over recent years, international competition in the area of rare mineral minerals has been escalating. On the basis' of the identification of 22 rare mineral resources of six categories and analysis of their applications in strategic emerging industries, this paper has adopted a three-factor analytical framework and designed nine indicators from the three dimensions of supply risks, environmental impacts and economic impacts of restricted supply to conduct a quantitative evaluation of the strategic significance of rare mineral resources. The result indicates that the strategic significance of platinum-group metals is the highest and the strategic significance of cesium is the lowest. In order to further increase the reliability of evaluation results, this paper has employed the Monte Carlo simulation for uncertainty analysis'. Simulation result demonstrates that after the impacts" of individual indicators have been taken into account, the results' of this paper's evaluation of 22 rare mineral resources remain valid. Given the growing significance of rare mineral resources to strategic emerging industries, China should formulate a national strategy on rare mineral resources', strive to inerease the supply security of key raw materials for strategic emerging industries and achieve the sustainable development and utilization of rare mineral resources for national security of natural resources.
文摘In this paper, we conduct research on the cause and dynamics of seawater intrusion in the Laizhou bay. To consider modelling the Laizhou bay, we should then take the listed tools into consideration. In actual engineering, wave is a complicated stochastic process. If the numerical value of wave model is a little too large, the wave attenuation should be considered sufficiently, such as wave refraction caused by terrain change, wave attenuation due to submarine friction, wave into the very shallow waters of the broken and small wind area. We integrate the current conition of the Laizhou bay and the further model the seawater intrusion steps. The uncertainty research of ground water solute migration is at present a ground water research area quite popular topic, but the seawater intrusion is the variable density class solute migration issue, applies the uncertainty analysis of seawater intrusion simulation also to have certain difficulty the existing research results. In the future, more simulation will be down to verify the effectiveness.