This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentia...This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.展开更多
Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the firs...Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.展开更多
The stabilization of a class of neutral systems with multiple time-delays is considered. To stabilize the neutral system with nonlinear uncertainty, a state feedback control law via compound memory and memoryless feed...The stabilization of a class of neutral systems with multiple time-delays is considered. To stabilize the neutral system with nonlinear uncertainty, a state feedback control law via compound memory and memoryless feedback is derived, by constructed Lyapunov functional, delay-independent stability criteria are proposed that are sufficient to ensure a uniform asymptotic stability property. Finally, two concise examples are provided to illustrate the feasibility of our results.展开更多
A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive ti...A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances.The longitudinal dynamic model for the flexible AHV was used for the control development.High-gain observers were designed to compensate for the system uncertainties and additive disturbances.Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system.Locally uniformly ultimately bounded tracking of the vehicle's velocity,altitude and attack angle were achieved under aeroelastic effects,system parametric uncertainties and unknown additive disturbances.Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design.The simulation results demonstrate that the tracking errors stay in a small region around zero.展开更多
Based on the Lyapunov stability theory,a new method for synchronization of hyperchaotic Rossler system with uncertain parameters is proposed. By this method, choosing appropriate control law and adaptive update law of...Based on the Lyapunov stability theory,a new method for synchronization of hyperchaotic Rossler system with uncertain parameters is proposed. By this method, choosing appropriate control law and adaptive update law of uncertain parameters, all the errors of system variable synchronization and of uncertain param- eter track are asymptotically stable. The theoretical analysis and the numerical simulations prove the efffectiveness of the oroDosed method.展开更多
Chaos theory is used to prove that erratic and chaotic fluctuations can indeed arise in completely deterministic models. Chaos theory reveals structure in aperiodic, dynamic systems. A number of non-linear business cy...Chaos theory is used to prove that erratic and chaotic fluctuations can indeed arise in completely deterministic models. Chaos theory reveals structure in aperiodic, dynamic systems. A number of non-linear business cycle models use chaos theory to explain complex motion of the economy. Chaotic systems exhibit a sensitive dependence on initial conditions: Seemingly insignificant changes in the initial conditions produce large differences in outcomes. The basic aim of this analysis is to provide a relatively simple chaotic real-exchange-rate growth model that is capable of generating stable equilibria, cycles, or chaos.展开更多
Abstract: This paper describes the development and characterization of a two-temperature (2-T), constant pressure humidity generator It relies on the saturation of a stream of gas flowing over a water surface maint...Abstract: This paper describes the development and characterization of a two-temperature (2-T), constant pressure humidity generator It relies on the saturation of a stream of gas flowing over a water surface maintained at constant, well-known, temperature. It was built in order to improve the uncertainties of the dew-point temperature and humidity scales realization at the National Institute for Standard (NIS) in the dew-point range from -50 ℃ to + 10 ℃. Several experiments were carried out in the above mentioned range in order to characterize the generator. Characterization comprised studies of its saturator efficiency, temperature stability and a comparison with a calibrated chilled-mirror hygrometer. The results of the efficiency tests showed good performance of the generator as described below. For uncertainty of measurements, a thorough analysis was also described representing estimations of contributions for all the sources that affecting measurements.展开更多
This paper addresses to the problem of designing, modeling and practical realization of robust model predictive control for finite and infinite prediction horizon which ensures a parameter dependent quadratic stabilit...This paper addresses to the problem of designing, modeling and practical realization of robust model predictive control for finite and infinite prediction horizon which ensures a parameter dependent quadratic stability and guaranteed cost for linear polytopic uncertain systems. The model predictive controller design procedure based on BMI and LMI is reduced to off-line output feedback gain calculation. A numerical examples and an application to a real process is given to illustrate the effectiveness of the proposed method.展开更多
The uncertainty influences may result in performance deterioration and instability to the steer by wire(SBW) system. Thus, it must make the control system keep robust stability from uncertainty, and have good robustne...The uncertainty influences may result in performance deterioration and instability to the steer by wire(SBW) system. Thus, it must make the control system keep robust stability from uncertainty, and have good robustness. In order to effectively restrain the interference and improve steering stability, this paper presents a μ synthesis robust controller based on SBW system, which considers the effect of model uncertainty and external disturbance on the system dynamics. Taking the ideal yaw rate tracking, interference suppression and excellent robustness as the control objectives, the μ synthesis robust controller is designed using linear fractional transformation theory to deal with the uncertainty. Then, it is testified through time domain and robustness simulation analysis. Simulation results show that the proposed controller can not only ensure robustness and robust stability of the system quite well, but improve handling stability of the vehicle effectively. The results of this study provide certain theoretical basis for the research and application of SBW system.展开更多
This paper focuses on the existence, uniqueness and global robust stability of equilibrium point for complex-valued recurrent neural networks with multiple time-delays and under parameter uncertainties with respect to...This paper focuses on the existence, uniqueness and global robust stability of equilibrium point for complex-valued recurrent neural networks with multiple time-delays and under parameter uncertainties with respect to two activation functions. Two sufficient conditions for robust stability of the considered neural networks are presented and established in two new time-independent relationships between the network parameters of the neural system, Finally, three illustrative examples are given to demonstrate the theoretical results.展开更多
In this paper, we discuss the behavior of a predator-prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analy...In this paper, we discuss the behavior of a predator-prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analyzing stabilities of its four equilibria. Then, we consider the asymptotic behavior of the stochastic system. By Lyapunov analysis methods, we show the stochastic stability and its long time behavior around the equi- librium of the deterministic system. We obtain there are similar properties between the stochastic system and its corresponding deterministic system, when white noise is small. But large white noise can make a unstable deterministic system to be stable.展开更多
This paper deals with the robust stability analysis of dynamic systems with interval time- varying delay and uncertainties. The innovation of the method includes employment of a tighter integral inequality and constru...This paper deals with the robust stability analysis of dynamic systems with interval time- varying delay and uncertainties. The innovation of the method includes employment of a tighter integral inequality and construction of an appropriate type of Lyapunov functional. The stability criteria derived from this method have less conservatism than some existing ones. Numerical examples are given to illustrate the effectiveness of the orooosed method.展开更多
Complex large scale systems possess the characteristics of high dimensionality, large number of variables, strong nonlinearity, and parametric uncertainty. One of the effective approaches for the complex system modeli...Complex large scale systems possess the characteristics of high dimensionality, large number of variables, strong nonlinearity, and parametric uncertainty. One of the effective approaches for the complex system modeling is using a hybrid interconnected model to describe the dynamics of each subsystem. Usually, some subsystems could be represented by analytic mathematical models due to their explicit mechanisms; others could only be modeled by intelligent methods because of their complicated behaviors. This paper focuses on a kind of large-scale uncertain systems with hybrid interconnected models, a part of which described by linear differential-equations and another part represented by Takagi-Sugeno fuzzy models. Through constructing a set of independent lower-dimensional linear matrix inequalities, and solving them in parallel, a novel robust stability analysis method is proposed. Thus the computational complexity is greatly reduced. Computer simulation is conducted to validate the effectiveness and efficiency of the proposed method.展开更多
基金The Major Program of National Natural Science Foundation of China(No.11190015)the National Natural Science Foundation of China(No.61374006)
文摘This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.
文摘Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.
基金Supported by the Foundation of the National Key Development Plan on Foundational Study(G1998030417) Supported by the Shaanxi Provincial Department of Education(06JK149)
文摘The stabilization of a class of neutral systems with multiple time-delays is considered. To stabilize the neutral system with nonlinear uncertainty, a state feedback control law via compound memory and memoryless feedback is derived, by constructed Lyapunov functional, delay-independent stability criteria are proposed that are sufficient to ensure a uniform asymptotic stability property. Finally, two concise examples are provided to illustrate the feasibility of our results.
基金Projects(90916004,60804004)supported by the National Natural Science Foundation of ChinaProject supported by the Program for the New Century,ChinaProject(NCET-09-0590)supported by Excellent Talents in University,China
文摘A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances.The longitudinal dynamic model for the flexible AHV was used for the control development.High-gain observers were designed to compensate for the system uncertainties and additive disturbances.Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system.Locally uniformly ultimately bounded tracking of the vehicle's velocity,altitude and attack angle were achieved under aeroelastic effects,system parametric uncertainties and unknown additive disturbances.Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design.The simulation results demonstrate that the tracking errors stay in a small region around zero.
基金Supported by the National Natural Science Foundation of China(60374037 ,60574036) ,and the Specialized Research Foundationfor the Doctoral Program of Higher Education of China(20050055013) .
文摘Based on the Lyapunov stability theory,a new method for synchronization of hyperchaotic Rossler system with uncertain parameters is proposed. By this method, choosing appropriate control law and adaptive update law of uncertain parameters, all the errors of system variable synchronization and of uncertain param- eter track are asymptotically stable. The theoretical analysis and the numerical simulations prove the efffectiveness of the oroDosed method.
文摘Chaos theory is used to prove that erratic and chaotic fluctuations can indeed arise in completely deterministic models. Chaos theory reveals structure in aperiodic, dynamic systems. A number of non-linear business cycle models use chaos theory to explain complex motion of the economy. Chaotic systems exhibit a sensitive dependence on initial conditions: Seemingly insignificant changes in the initial conditions produce large differences in outcomes. The basic aim of this analysis is to provide a relatively simple chaotic real-exchange-rate growth model that is capable of generating stable equilibria, cycles, or chaos.
文摘Abstract: This paper describes the development and characterization of a two-temperature (2-T), constant pressure humidity generator It relies on the saturation of a stream of gas flowing over a water surface maintained at constant, well-known, temperature. It was built in order to improve the uncertainties of the dew-point temperature and humidity scales realization at the National Institute for Standard (NIS) in the dew-point range from -50 ℃ to + 10 ℃. Several experiments were carried out in the above mentioned range in order to characterize the generator. Characterization comprised studies of its saturator efficiency, temperature stability and a comparison with a calibrated chilled-mirror hygrometer. The results of the efficiency tests showed good performance of the generator as described below. For uncertainty of measurements, a thorough analysis was also described representing estimations of contributions for all the sources that affecting measurements.
文摘This paper addresses to the problem of designing, modeling and practical realization of robust model predictive control for finite and infinite prediction horizon which ensures a parameter dependent quadratic stability and guaranteed cost for linear polytopic uncertain systems. The model predictive controller design procedure based on BMI and LMI is reduced to off-line output feedback gain calculation. A numerical examples and an application to a real process is given to illustrate the effectiveness of the proposed method.
基金supported by the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University(Grant Nos.SKLMT-KFKT-2014010&SKLMT-KFKT-201507)the National Natural Science Foundation of China(Grant Nos.51375007&51605219)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.NE2016002)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2015022352)
文摘The uncertainty influences may result in performance deterioration and instability to the steer by wire(SBW) system. Thus, it must make the control system keep robust stability from uncertainty, and have good robustness. In order to effectively restrain the interference and improve steering stability, this paper presents a μ synthesis robust controller based on SBW system, which considers the effect of model uncertainty and external disturbance on the system dynamics. Taking the ideal yaw rate tracking, interference suppression and excellent robustness as the control objectives, the μ synthesis robust controller is designed using linear fractional transformation theory to deal with the uncertainty. Then, it is testified through time domain and robustness simulation analysis. Simulation results show that the proposed controller can not only ensure robustness and robust stability of the system quite well, but improve handling stability of the vehicle effectively. The results of this study provide certain theoretical basis for the research and application of SBW system.
基金This publication was made possible by NPRP Grant ≠NPRP 4-1162-1-181 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. This work was also supported by Natural Science Foundation of China (Grant No. 61374078).
文摘This paper focuses on the existence, uniqueness and global robust stability of equilibrium point for complex-valued recurrent neural networks with multiple time-delays and under parameter uncertainties with respect to two activation functions. Two sufficient conditions for robust stability of the considered neural networks are presented and established in two new time-independent relationships between the network parameters of the neural system, Finally, three illustrative examples are given to demonstrate the theoretical results.
文摘In this paper, we discuss the behavior of a predator-prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analyzing stabilities of its four equilibria. Then, we consider the asymptotic behavior of the stochastic system. By Lyapunov analysis methods, we show the stochastic stability and its long time behavior around the equi- librium of the deterministic system. We obtain there are similar properties between the stochastic system and its corresponding deterministic system, when white noise is small. But large white noise can make a unstable deterministic system to be stable.
基金supported by National Nature Science Foundation of China under Grant Nos.60174032,61004019the Key Project of Science&Technology Commission of Shanghai under Grant No.10JC140500
文摘This paper deals with the robust stability analysis of dynamic systems with interval time- varying delay and uncertainties. The innovation of the method includes employment of a tighter integral inequality and construction of an appropriate type of Lyapunov functional. The stability criteria derived from this method have less conservatism than some existing ones. Numerical examples are given to illustrate the effectiveness of the orooosed method.
文摘Complex large scale systems possess the characteristics of high dimensionality, large number of variables, strong nonlinearity, and parametric uncertainty. One of the effective approaches for the complex system modeling is using a hybrid interconnected model to describe the dynamics of each subsystem. Usually, some subsystems could be represented by analytic mathematical models due to their explicit mechanisms; others could only be modeled by intelligent methods because of their complicated behaviors. This paper focuses on a kind of large-scale uncertain systems with hybrid interconnected models, a part of which described by linear differential-equations and another part represented by Takagi-Sugeno fuzzy models. Through constructing a set of independent lower-dimensional linear matrix inequalities, and solving them in parallel, a novel robust stability analysis method is proposed. Thus the computational complexity is greatly reduced. Computer simulation is conducted to validate the effectiveness and efficiency of the proposed method.