提出了确定性退火聚类和最小二乘支持向量机(Least Square Support Vectorma-chine,LSSVM)相结合的电力系统短期负荷预测方法。考虑影响负荷变化的各种因素构造负荷样本数据,利用确定性退火聚类算法对样本数据进行分类,得到的分类样本...提出了确定性退火聚类和最小二乘支持向量机(Least Square Support Vectorma-chine,LSSVM)相结合的电力系统短期负荷预测方法。考虑影响负荷变化的各种因素构造负荷样本数据,利用确定性退火聚类算法对样本数据进行分类,得到的分类样本数据作为最小二乘支持向量机的学习样本,保证最小二乘支持向量机具有较高的预测精度。利用某电力公司2007年负荷数据和气象数据进行仿真实验,仿真结果表明该方法具有较高的预测精度。展开更多
文摘提出了确定性退火聚类和最小二乘支持向量机(Least Square Support Vectorma-chine,LSSVM)相结合的电力系统短期负荷预测方法。考虑影响负荷变化的各种因素构造负荷样本数据,利用确定性退火聚类算法对样本数据进行分类,得到的分类样本数据作为最小二乘支持向量机的学习样本,保证最小二乘支持向量机具有较高的预测精度。利用某电力公司2007年负荷数据和气象数据进行仿真实验,仿真结果表明该方法具有较高的预测精度。