Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa...Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.展开更多
Conditions of formation, structure and properties of boride iron layers on carbonaceous steels 3 and 45 at electron beam borating are investigated. New process to make layers of iron borides (Fe2B, FeB) using electr...Conditions of formation, structure and properties of boride iron layers on carbonaceous steels 3 and 45 at electron beam borating are investigated. New process to make layers of iron borides (Fe2B, FeB) using electron beam are reported. The microstructure and microhardness of boride layers are investigated and also are compared to layer properties obtained at solid phase borating. Formed layers were heterogeneous structure combining solid and weak components and resulting in to fragility reduction of boride layer.展开更多
Chemical vapor deposition growth of one-dimensional nanomaterials usually demands substrates that have been coated with a layer of catalyst film. In this study, a green process to synthesize boron nitfide (BN) nanow...Chemical vapor deposition growth of one-dimensional nanomaterials usually demands substrates that have been coated with a layer of catalyst film. In this study, a green process to synthesize boron nitfide (BN) nanowires directly on commercial stainless steel foils was proposed by heating boron and zinc oxide powders under a mixture gas flow of N2 arid 15% H2 at 1100℃, and a large quantities of pure h-BN nanowires have been produced directly on commercial stainless steel foil. The stainless steel foils not only acted as the substrate but also the catalyst for the nanowire growth. The synthesized BN nanowires were characterized by X-ray diffraction, scanning and transmission electron microscopes, X-ray energy dispersive spectrometer and photoluminescence spectroscopy, The nanowires also possess strong PL emission bands at 515, 535, and 728 nm.展开更多
Binderless nanotwinned cubic boron nitride(nt-cBN) synthesized from onion-structured BN precursors under high pressure and high temperature shows a very fine microstructure consisting of densely lamellar nanotwins(ave...Binderless nanotwinned cubic boron nitride(nt-cBN) synthesized from onion-structured BN precursors under high pressure and high temperature shows a very fine microstructure consisting of densely lamellar nanotwins(average thickness of 4 nm) within nanograins. The unique nanotwinned microstructure offers high hardness, wear resistance, fracture toughness, and thermal stability which are essential for advanced cBN tool materials. Thus, a circular micro tool of nt-cBN was fabricated using femtosecond laser contour machining followed by focused ion beam precision milling. Thereafter turning tests were performed on hardened steel using the studied micro tool. To evaluate the cutting performance, the machined surface quality and subsurface damage of the hardened steel were characterized. The wear mechanism of the nt-cBN micro tool was also investigated. It is found that the fabricated nt-cBN micro tool can generate high quality surface with surface roughness less than 7 nm and nanograin subsurface of about 500 nm deep. In addition, abrasive wear is found to be the dominant wear mechanism of the nt-cBN micro tool in turning hardened steel. These results indicate that nt-cBN has outstanding potential for ultra-precision cutting hardened steel.展开更多
基金Project (51275185) supported by the National Natural Science Foundation of China
文摘Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.
文摘Conditions of formation, structure and properties of boride iron layers on carbonaceous steels 3 and 45 at electron beam borating are investigated. New process to make layers of iron borides (Fe2B, FeB) using electron beam are reported. The microstructure and microhardness of boride layers are investigated and also are compared to layer properties obtained at solid phase borating. Formed layers were heterogeneous structure combining solid and weak components and resulting in to fragility reduction of boride layer.
文摘Chemical vapor deposition growth of one-dimensional nanomaterials usually demands substrates that have been coated with a layer of catalyst film. In this study, a green process to synthesize boron nitfide (BN) nanowires directly on commercial stainless steel foils was proposed by heating boron and zinc oxide powders under a mixture gas flow of N2 arid 15% H2 at 1100℃, and a large quantities of pure h-BN nanowires have been produced directly on commercial stainless steel foil. The stainless steel foils not only acted as the substrate but also the catalyst for the nanowire growth. The synthesized BN nanowires were characterized by X-ray diffraction, scanning and transmission electron microscopes, X-ray energy dispersive spectrometer and photoluminescence spectroscopy, The nanowires also possess strong PL emission bands at 515, 535, and 728 nm.
基金supported by the National Natural Science Foundation of China(Grant Nos.51205343,51332005&51421091)Hebei Provincial Science Foundation of China(Grant No.E2016203372)
文摘Binderless nanotwinned cubic boron nitride(nt-cBN) synthesized from onion-structured BN precursors under high pressure and high temperature shows a very fine microstructure consisting of densely lamellar nanotwins(average thickness of 4 nm) within nanograins. The unique nanotwinned microstructure offers high hardness, wear resistance, fracture toughness, and thermal stability which are essential for advanced cBN tool materials. Thus, a circular micro tool of nt-cBN was fabricated using femtosecond laser contour machining followed by focused ion beam precision milling. Thereafter turning tests were performed on hardened steel using the studied micro tool. To evaluate the cutting performance, the machined surface quality and subsurface damage of the hardened steel were characterized. The wear mechanism of the nt-cBN micro tool was also investigated. It is found that the fabricated nt-cBN micro tool can generate high quality surface with surface roughness less than 7 nm and nanograin subsurface of about 500 nm deep. In addition, abrasive wear is found to be the dominant wear mechanism of the nt-cBN micro tool in turning hardened steel. These results indicate that nt-cBN has outstanding potential for ultra-precision cutting hardened steel.