This paper presents an innovative approach to reusing waste tile granules(TG) and ceramic polishing powder(PP) to produce high performance ceramic tiles.We studied formulations each with a TG mass fraction of 25.0% an...This paper presents an innovative approach to reusing waste tile granules(TG) and ceramic polishing powder(PP) to produce high performance ceramic tiles.We studied formulations each with a TG mass fraction of 25.0% and a different PP mass fraction between 1.0% and 7.0%.The formulations included a small amount of borax additive of a mass fracton between 0.2% and 1.2%.The effects of these industrial by-products on compressive strength,water absorption and microstructure of the new ceramic tiles were investigated.The results indicate that the compressive strength decreases and water absorption increases when TG with a mass fraction of 25.0% are added.Improvement of the compressive strength may be achieved when TG(up to 25.0%) and PP(up to 2.0%) are both used at the same time.In particular,the compressive strength improvement can be maximized and water absorption reduced when a borax additive of up to 0.5% is used as a flux.Scanning electron microscopy reveals that a certain amount of fine PP granules and a high content of fluxing oxides from borax avail the formation of glassy phase that fills up the pores in the new ceramic tiles,resulting in a dense product with high compressive strength and low water absorption.展开更多
An in-situ TiB whisker reinforced Ti matrix (TiBw/Ti) composite is fabricated by powder metallurgy technique followed by hot extrusion. Hot compressive deformation behavior of the composite, in which the TiB whiskers ...An in-situ TiB whisker reinforced Ti matrix (TiBw/Ti) composite is fabricated by powder metallurgy technique followed by hot extrusion. Hot compressive deformation behavior of the composite, in which the TiB whiskers were oriented along the extruded direction, is investigated. The results indicate that the hot compressive resistance of the TiBw/Ti composite is higher than that of the unreinforced Ti, and hot compressive resistance of the composite in the direction parallel to the whisker orientation is higher than that in the direction perpendicular to the whisker orientation. The hot compressive resistance of the composite increases with increasing strain rate and decreasing temperature. With increasing test temperature, the rate of the decrement of the compressive flow stress of the composite is higher than that of the unreinforced Ti. With increasing amount of compressive deformation, more and more TiB whiskers rotate and break during deformation. The rotation of the whiskers is easier at higher temperature, while, at lower temperature it becomes more difficult and whisker breakage becomes much more serious.展开更多
基金Funded by a grant from the Key Technologies R & D Program of Guangzhou (No. 2004440003110013)
文摘This paper presents an innovative approach to reusing waste tile granules(TG) and ceramic polishing powder(PP) to produce high performance ceramic tiles.We studied formulations each with a TG mass fraction of 25.0% and a different PP mass fraction between 1.0% and 7.0%.The formulations included a small amount of borax additive of a mass fracton between 0.2% and 1.2%.The effects of these industrial by-products on compressive strength,water absorption and microstructure of the new ceramic tiles were investigated.The results indicate that the compressive strength decreases and water absorption increases when TG with a mass fraction of 25.0% are added.Improvement of the compressive strength may be achieved when TG(up to 25.0%) and PP(up to 2.0%) are both used at the same time.In particular,the compressive strength improvement can be maximized and water absorption reduced when a borax additive of up to 0.5% is used as a flux.Scanning electron microscopy reveals that a certain amount of fine PP granules and a high content of fluxing oxides from borax avail the formation of glassy phase that fills up the pores in the new ceramic tiles,resulting in a dense product with high compressive strength and low water absorption.
文摘An in-situ TiB whisker reinforced Ti matrix (TiBw/Ti) composite is fabricated by powder metallurgy technique followed by hot extrusion. Hot compressive deformation behavior of the composite, in which the TiB whiskers were oriented along the extruded direction, is investigated. The results indicate that the hot compressive resistance of the TiBw/Ti composite is higher than that of the unreinforced Ti, and hot compressive resistance of the composite in the direction parallel to the whisker orientation is higher than that in the direction perpendicular to the whisker orientation. The hot compressive resistance of the composite increases with increasing strain rate and decreasing temperature. With increasing test temperature, the rate of the decrement of the compressive flow stress of the composite is higher than that of the unreinforced Ti. With increasing amount of compressive deformation, more and more TiB whiskers rotate and break during deformation. The rotation of the whiskers is easier at higher temperature, while, at lower temperature it becomes more difficult and whisker breakage becomes much more serious.