The amorphous boron powders with high activity were prepared by the high-energy ball milling-combustion synthesis method. The effects of the milling rate and milling time on the crystallinity, microscopic morphology a...The amorphous boron powders with high activity were prepared by the high-energy ball milling-combustion synthesis method. The effects of the milling rate and milling time on the crystallinity, microscopic morphology and reactivity of amorphous boron powder were studied. The results show that the crystallinity of amorphous nano-boron powder is only 22.5%, and its purity reaches 92.86%. The high-energy ball milling can significantly refine boron powder particle sizes, whose average particle sizes are smaller than 50 nm, and specific surface areas are of up to 70.03 m2/g. When the transmission electron beam irradiates the samples, they rapidly melt. It can be seen that the monomer amorphous boron size is less than 30 nm from the specimen melting traces, which indicates that the samples have high reactivity.展开更多
The preparation process of amorphous nanometer boron powders through combustion synthesis was investigated, and the effects of the reactant ratio, the heating agent and the milling rate on the activity and particle si...The preparation process of amorphous nanometer boron powders through combustion synthesis was investigated, and the effects of the reactant ratio, the heating agent and the milling rate on the activity and particle size of amorphous boron powders were studied. The results show that the boron powders exist in the form of an amorphous phase which has the crystallinity lower than 30.4%, and the panicle size of boron powder decreases with an increase of the high-energy ball milling rate. The purity of amorphous boron powder is 94.8% and panicle sizes are much smaller than 100 nm when the mass ratio of B2O3/Mg/KClO3 is 100:105:17 and the ball milling time is 20 min with the milling rate of 300 r/min. At the same time, the amorphous boron nano-fibers appear in the boron powders.展开更多
基金Project(51002025)supported by the National Natural Science Foundation of China
文摘The amorphous boron powders with high activity were prepared by the high-energy ball milling-combustion synthesis method. The effects of the milling rate and milling time on the crystallinity, microscopic morphology and reactivity of amorphous boron powder were studied. The results show that the crystallinity of amorphous nano-boron powder is only 22.5%, and its purity reaches 92.86%. The high-energy ball milling can significantly refine boron powder particle sizes, whose average particle sizes are smaller than 50 nm, and specific surface areas are of up to 70.03 m2/g. When the transmission electron beam irradiates the samples, they rapidly melt. It can be seen that the monomer amorphous boron size is less than 30 nm from the specimen melting traces, which indicates that the samples have high reactivity.
基金Project(51002025) supported by the National Natural Science Foundation of China
文摘The preparation process of amorphous nanometer boron powders through combustion synthesis was investigated, and the effects of the reactant ratio, the heating agent and the milling rate on the activity and particle size of amorphous boron powders were studied. The results show that the boron powders exist in the form of an amorphous phase which has the crystallinity lower than 30.4%, and the panicle size of boron powder decreases with an increase of the high-energy ball milling rate. The purity of amorphous boron powder is 94.8% and panicle sizes are much smaller than 100 nm when the mass ratio of B2O3/Mg/KClO3 is 100:105:17 and the ball milling time is 20 min with the milling rate of 300 r/min. At the same time, the amorphous boron nano-fibers appear in the boron powders.