以无水CH3CN·BCl3和Li3N为原料,以苯为溶剂,在温度为330℃,压力为8~9MPa条件下,利用溶剂热合成方法成功地制备出了BCN三元化合物。X射线粉末衍射(XRD)分析表明,产物为类石墨态结构,透射电子显微镜(TEM)观测到产物中含有B C N纳米...以无水CH3CN·BCl3和Li3N为原料,以苯为溶剂,在温度为330℃,压力为8~9MPa条件下,利用溶剂热合成方法成功地制备出了BCN三元化合物。X射线粉末衍射(XRD)分析表明,产物为类石墨态结构,透射电子显微镜(TEM)观测到产物中含有B C N纳米管。X射线能谱(XPS)和Fourier变换红外光谱(FTIR)分析表明硼碳氮是以原子级化合的形式存在。展开更多
In this paper, we investigate the length dependence of linear and nonlinear optical properties of finite-length BN nanotubes. The recently predicted smallest BN(5,0) nanotube with configuration stabilization is sele...In this paper, we investigate the length dependence of linear and nonlinear optical properties of finite-length BN nanotubes. The recently predicted smallest BN(5,0) nanotube with configuration stabilization is selected as an example. The energy gap and optical gap show the obvious length dependence with the increase of nanotube length. When the length reaches about 24 /~, the energy gap will saturate at about 3.2 eV, which agrees well with the corrected quasi- particle energy gap. The third-order polarizabilities increase with the increase of tube length. Two-photon allowed excited states have significant contributions to the third-order polarizabilities of BN(5,0) nanotube.展开更多
文摘以无水CH3CN·BCl3和Li3N为原料,以苯为溶剂,在温度为330℃,压力为8~9MPa条件下,利用溶剂热合成方法成功地制备出了BCN三元化合物。X射线粉末衍射(XRD)分析表明,产物为类石墨态结构,透射电子显微镜(TEM)观测到产物中含有B C N纳米管。X射线能谱(XPS)和Fourier变换红外光谱(FTIR)分析表明硼碳氮是以原子级化合的形式存在。
基金Project supported by the National Natural Science Foundation of China (Grant Nos 20373073 and 90201015), the Science Foundation of Fujian Province, China (Grant Nos E0210028 and 2002F010), and the Foundation of State Key Laboratory of Structural Chemistry, China (Grant No 030060).
文摘In this paper, we investigate the length dependence of linear and nonlinear optical properties of finite-length BN nanotubes. The recently predicted smallest BN(5,0) nanotube with configuration stabilization is selected as an example. The energy gap and optical gap show the obvious length dependence with the increase of nanotube length. When the length reaches about 24 /~, the energy gap will saturate at about 3.2 eV, which agrees well with the corrected quasi- particle energy gap. The third-order polarizabilities increase with the increase of tube length. Two-photon allowed excited states have significant contributions to the third-order polarizabilities of BN(5,0) nanotube.