Based on density functional theory calculations,the full hydrolysis of per NH3BH3 molecule to produce three hydrogen molecules on single Pt atoms supported on oxidized graphene(Pt1/Gr-O)is investigated.It is suggested...Based on density functional theory calculations,the full hydrolysis of per NH3BH3 molecule to produce three hydrogen molecules on single Pt atoms supported on oxidized graphene(Pt1/Gr-O)is investigated.It is suggested that the first hydrogen molecule is produced by the combination of two hydrogen atoms from two successive B-H bonds breaking.Then one H2O molecule attacks the left*BHNH3 group(*represents adsorbed state)to form*BH(H2O)NH3 and the elongated O-H bond is easily broken to produce*BH(OH)NH3.The second H2O molecule attacks*BH(OH)NH3 to form*BH(OH)(H2O)NH3 and the breaking of O-H bond pointing to the plane of Pt1/Gr-O results in the desorption of BH(OH)2NH3.The second hydrogen molecule is produced from two hydrogen atoms coming from two H2O molecules and Pt1/Gr-O is recovered after the releasing of hydrogen molecule.The third hydrogen molecule is generated by the further hydrolysis of BH(OH)2NH3 in water solution.The rate-limiting step of the whole process is the combination of one H2O molecule and*BHNH3 with an energy barrier of 16.1 kcal/mol.Thus,Pt1/Gr-O is suggested to be a promising catalyst for hydrolysis of NH3BH3 at room temperature.展开更多
基金supported by the National Natural Science Foundation of China (No.21473167 and No.21688102)the National Key Research and Development Program of China (No.2016YFA0200604)+1 种基金the Fundamental Research Funds for the Central Universities (WK3430000005,WK2340000065)the China Scholarship Council (CSC) (No.201706345015)
文摘Based on density functional theory calculations,the full hydrolysis of per NH3BH3 molecule to produce three hydrogen molecules on single Pt atoms supported on oxidized graphene(Pt1/Gr-O)is investigated.It is suggested that the first hydrogen molecule is produced by the combination of two hydrogen atoms from two successive B-H bonds breaking.Then one H2O molecule attacks the left*BHNH3 group(*represents adsorbed state)to form*BH(H2O)NH3 and the elongated O-H bond is easily broken to produce*BH(OH)NH3.The second H2O molecule attacks*BH(OH)NH3 to form*BH(OH)(H2O)NH3 and the breaking of O-H bond pointing to the plane of Pt1/Gr-O results in the desorption of BH(OH)2NH3.The second hydrogen molecule is produced from two hydrogen atoms coming from two H2O molecules and Pt1/Gr-O is recovered after the releasing of hydrogen molecule.The third hydrogen molecule is generated by the further hydrolysis of BH(OH)2NH3 in water solution.The rate-limiting step of the whole process is the combination of one H2O molecule and*BHNH3 with an energy barrier of 16.1 kcal/mol.Thus,Pt1/Gr-O is suggested to be a promising catalyst for hydrolysis of NH3BH3 at room temperature.