期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Single Pt Atoms Supported on Oxidized Graphene as a Promising Catalyst for Hydrolysis of Ammonia Borane 被引量:1
1
作者 Hong Wu Qi-quan Luo +2 位作者 Rui-qi Zhang Wen-hua Zhang Jin-long Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期641-648,735,共9页
Based on density functional theory calculations,the full hydrolysis of per NH3BH3 molecule to produce three hydrogen molecules on single Pt atoms supported on oxidized graphene(Pt1/Gr-O)is investigated.It is suggested... Based on density functional theory calculations,the full hydrolysis of per NH3BH3 molecule to produce three hydrogen molecules on single Pt atoms supported on oxidized graphene(Pt1/Gr-O)is investigated.It is suggested that the first hydrogen molecule is produced by the combination of two hydrogen atoms from two successive B-H bonds breaking.Then one H2O molecule attacks the left*BHNH3 group(*represents adsorbed state)to form*BH(H2O)NH3 and the elongated O-H bond is easily broken to produce*BH(OH)NH3.The second H2O molecule attacks*BH(OH)NH3 to form*BH(OH)(H2O)NH3 and the breaking of O-H bond pointing to the plane of Pt1/Gr-O results in the desorption of BH(OH)2NH3.The second hydrogen molecule is produced from two hydrogen atoms coming from two H2O molecules and Pt1/Gr-O is recovered after the releasing of hydrogen molecule.The third hydrogen molecule is generated by the further hydrolysis of BH(OH)2NH3 in water solution.The rate-limiting step of the whole process is the combination of one H2O molecule and*BHNH3 with an energy barrier of 16.1 kcal/mol.Thus,Pt1/Gr-O is suggested to be a promising catalyst for hydrolysis of NH3BH3 at room temperature. 展开更多
关键词 Density functional theory Single atom catalysis Platinum Oxidized graphene Ammonia borane hydrolysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部