The lithium sodium borate glasses doped with Eu3+ ion are prepared using melt quenching technique, their structural and optical properties have been evaluated. The density of pre- pared glasses exhibits an inverse be...The lithium sodium borate glasses doped with Eu3+ ion are prepared using melt quenching technique, their structural and optical properties have been evaluated. The density of pre- pared glasses exhibits an inverse behavior to the molar volume ranging from 2.26 g/cm3 to 2.43 g/cm3 and 26.95 cm3/mol to 26.20 cm3/mol, respectively. The absence of sharp peaks in XRD patterns confirms the amorphous nature of the prepared glasses. The absorption spectra yield four transitions centered at 391 nm (7F0→5L6), 463 nm (7F0→5D2), 531 nm (7F0→5D1), and 582 nm (7F0→5D0). The most intense red luminescence is observed at 612 nm corresponding to 5D0→7F2 transition under 390 nm laser excitations.展开更多
A simultaneous blue-light and red-light emitting glass of SrO-B2O3-P2O5 doped with Eu2O3 is prepared in air, and then heat-treated without any reductive reagent. A transition combination is found to consist of a band ...A simultaneous blue-light and red-light emitting glass of SrO-B2O3-P2O5 doped with Eu2O3 is prepared in air, and then heat-treated without any reductive reagent. A transition combination is found to consist of a band emission peaked around 430 nm and a series of line emission from 593 nm to 611 nm, corresponding to the typical 4f65d→ 4f7 transition of Eu2+ and 5D0 → 7FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+, respectively. Some unidentified crystals such as Sr (PO3)2 and SrB2O4 as hosts for Eu2+ with more stronger crystal field lead to this enhancement of photoluminescence (PL) intensity superior to the asprepared parent glass.展开更多
文摘The lithium sodium borate glasses doped with Eu3+ ion are prepared using melt quenching technique, their structural and optical properties have been evaluated. The density of pre- pared glasses exhibits an inverse behavior to the molar volume ranging from 2.26 g/cm3 to 2.43 g/cm3 and 26.95 cm3/mol to 26.20 cm3/mol, respectively. The absence of sharp peaks in XRD patterns confirms the amorphous nature of the prepared glasses. The absorption spectra yield four transitions centered at 391 nm (7F0→5L6), 463 nm (7F0→5D2), 531 nm (7F0→5D1), and 582 nm (7F0→5D0). The most intense red luminescence is observed at 612 nm corresponding to 5D0→7F2 transition under 390 nm laser excitations.
基金the National Natural Science Foundation of China(No.50872091)the Key Discipline of Materials Physics and Chemistry of Tianjin,(No.10SYSYJC28100)
文摘A simultaneous blue-light and red-light emitting glass of SrO-B2O3-P2O5 doped with Eu2O3 is prepared in air, and then heat-treated without any reductive reagent. A transition combination is found to consist of a band emission peaked around 430 nm and a series of line emission from 593 nm to 611 nm, corresponding to the typical 4f65d→ 4f7 transition of Eu2+ and 5D0 → 7FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+, respectively. Some unidentified crystals such as Sr (PO3)2 and SrB2O4 as hosts for Eu2+ with more stronger crystal field lead to this enhancement of photoluminescence (PL) intensity superior to the asprepared parent glass.