Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used ...Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used separately:synthetic ceramic particles(B_(4)C),and natural ceramic particles(ilmenite).Optical micrographs showed uniform dispersion of reinforced particles in the matrix material.Reinforced particles refined the grain size of eutectic silicon and changed its morphology to globular type.B_(4)C reinforced composites(BRCs)showed maximum improvement in hardness of AMCs.Ilmenite reinforced composites(IRCs)showed maximum reduction in coefficient of friction values due to strong matrix−reinforcement interfacial bonding caused by the formation of interfacial compounds.Dry sliding wear behaviour of composites was significantly improved as compared to base alloy.The low density and high hardness of B_(4)C particles resulted in high dislocation density around filler particles in BRCs.On the other hand,the low thermal conductivity of ilmenite particles resulted in early oxidation and formation of a tribo-layer on surface of IRCs.So,both types of reinforcements led to the improvement in wear properties of AMCs,though the mechanisms involved were very different.Thus,the low-cost ilmenite particles can be used as alternative fillers to the high-cost B_(4)C particles for processing of wear resistant composites.展开更多
In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,cryst...In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,crystallization of separated boron-rich slag and factors on the extraction efficiency of boron-rich slag were systematically investigated.B2O3 content would heavily affect the melting and fluidity property of boron-rich slag.Generally,FeO could improve the melting and fluidity property of boron-rich slag.Boron-containing crystalline phase mainly precipitated in temperature range from 1200°C to 1100°C.Higher smelting temperature and B2O3 reduction ratio were negative for the extraction of boron.The cooling rate of 10–20°C/min was better for the crystallization of boron-containing crystalline phase.Based on the obtained experimental results,the optimum operating parameters for the development of pyrometallurgical boron and iron separation process and further boron-rich slag cooling process were proposed.展开更多
A novel and clean technological route for the comprehensive utilization of low-grade ludwigite ore was proposed, inwhich magnesium was extracted by metallizing reduction?magnetic separation, sulfuric acid leaching an...A novel and clean technological route for the comprehensive utilization of low-grade ludwigite ore was proposed, inwhich magnesium was extracted by metallizing reduction?magnetic separation, sulfuric acid leaching and ethanol precipitationoperation. Meanwhile, iron-rich product, silicon-rich product and boron-rich product were obtained, respectively. In the process ofmetallizing reduction-magnetic separation, 94.6% of magnesium was enriched in the non-magnetic substance from the ore reducedat 1250 ℃ for 60 min with the ore size of 0.50-2.00 mm and coal size of 0.50-1.50 mm. When the non-magnetic substance wasleached at 90 ℃ for 15 min with the liquid-to-solid ratio of 7:1, 87.4% of magnesium was leached into the liquor separated fromsilicon gathering in leaching residue. The ethanol precipitation was conducted for 30 min with the ethanol-to-original liquid volumeratio of 1.5:1 at room temperature. 97.2% of magnesium was precipitated out with the initial concentration of 0.8 mol/L in the formof MgSO4·7H2O.展开更多
文摘Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used separately:synthetic ceramic particles(B_(4)C),and natural ceramic particles(ilmenite).Optical micrographs showed uniform dispersion of reinforced particles in the matrix material.Reinforced particles refined the grain size of eutectic silicon and changed its morphology to globular type.B_(4)C reinforced composites(BRCs)showed maximum improvement in hardness of AMCs.Ilmenite reinforced composites(IRCs)showed maximum reduction in coefficient of friction values due to strong matrix−reinforcement interfacial bonding caused by the formation of interfacial compounds.Dry sliding wear behaviour of composites was significantly improved as compared to base alloy.The low density and high hardness of B_(4)C particles resulted in high dislocation density around filler particles in BRCs.On the other hand,the low thermal conductivity of ilmenite particles resulted in early oxidation and formation of a tribo-layer on surface of IRCs.So,both types of reinforcements led to the improvement in wear properties of AMCs,though the mechanisms involved were very different.Thus,the low-cost ilmenite particles can be used as alternative fillers to the high-cost B_(4)C particles for processing of wear resistant composites.
基金Project(FRF-TP-16-019A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51274033)supported by the National Natural Science Foundation of China
文摘In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,crystallization of separated boron-rich slag and factors on the extraction efficiency of boron-rich slag were systematically investigated.B2O3 content would heavily affect the melting and fluidity property of boron-rich slag.Generally,FeO could improve the melting and fluidity property of boron-rich slag.Boron-containing crystalline phase mainly precipitated in temperature range from 1200°C to 1100°C.Higher smelting temperature and B2O3 reduction ratio were negative for the extraction of boron.The cooling rate of 10–20°C/min was better for the crystallization of boron-containing crystalline phase.Based on the obtained experimental results,the optimum operating parameters for the development of pyrometallurgical boron and iron separation process and further boron-rich slag cooling process were proposed.
基金Project(20100042110004)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProjects(N090502004,N140206003)supported by Fundamental Research Funds for the Central University,China
文摘A novel and clean technological route for the comprehensive utilization of low-grade ludwigite ore was proposed, inwhich magnesium was extracted by metallizing reduction?magnetic separation, sulfuric acid leaching and ethanol precipitationoperation. Meanwhile, iron-rich product, silicon-rich product and boron-rich product were obtained, respectively. In the process ofmetallizing reduction-magnetic separation, 94.6% of magnesium was enriched in the non-magnetic substance from the ore reducedat 1250 ℃ for 60 min with the ore size of 0.50-2.00 mm and coal size of 0.50-1.50 mm. When the non-magnetic substance wasleached at 90 ℃ for 15 min with the liquid-to-solid ratio of 7:1, 87.4% of magnesium was leached into the liquor separated fromsilicon gathering in leaching residue. The ethanol precipitation was conducted for 30 min with the ethanol-to-original liquid volumeratio of 1.5:1 at room temperature. 97.2% of magnesium was precipitated out with the initial concentration of 0.8 mol/L in the formof MgSO4·7H2O.