碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎...碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎米。将检测结果与国标法进行对比,结果表明逻辑回归模型的曲线线下面积(area under the curve,AUC)值为0.987,柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,KS)值为0.909,0.5为最佳阈值;而国标法的AUC值为0.922,KS值为0.669,21为最佳阈值。该文所建立的逻辑回归模型的准确率、精确率、召回率及F1分数均高于国标法。此外,逻辑回归模型的AUC值比国标法的AUC值更接近于1,KS值也更高,表明逻辑回归模型能够更好地区分碎米与整米。长轴(x_(1))、面积(x_(2))、短轴(x_(3))与长短轴比(x_(4))4个特征参数都是模型中具有显著影响的因素,对应的线性关系为z=-139.97-5.35x_(1)+10.93x_(2)+2.86x_(3)+34.59x_(4)。展开更多
文摘碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎米。将检测结果与国标法进行对比,结果表明逻辑回归模型的曲线线下面积(area under the curve,AUC)值为0.987,柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,KS)值为0.909,0.5为最佳阈值;而国标法的AUC值为0.922,KS值为0.669,21为最佳阈值。该文所建立的逻辑回归模型的准确率、精确率、召回率及F1分数均高于国标法。此外,逻辑回归模型的AUC值比国标法的AUC值更接近于1,KS值也更高,表明逻辑回归模型能够更好地区分碎米与整米。长轴(x_(1))、面积(x_(2))、短轴(x_(3))与长短轴比(x_(4))4个特征参数都是模型中具有显著影响的因素,对应的线性关系为z=-139.97-5.35x_(1)+10.93x_(2)+2.86x_(3)+34.59x_(4)。