Based on ANSYS/LS-DYNA, the dynamics analysis software, and using nonlinear dynamic finite element method, the process of a submarine pipeline impacted by dropped objects is simulated, Some conclusions are drawn: Fir...Based on ANSYS/LS-DYNA, the dynamics analysis software, and using nonlinear dynamic finite element method, the process of a submarine pipeline impacted by dropped objects is simulated, Some conclusions are drawn: First, the damage depth of suspended pipe is smaller than that of the bare pipe in case of the same fall energy, and with the increase of fall energy, the difference grows; Second, with the falling object's speed and mass rising, the deformation of pipeline intensifies at the impact site and the maximum vibration amplitude of submarine pipeline increases; Third, when the fall energy is equal, the smaller the contact area of falling objects and pipeline is, the greater the damage depth of pipeline becomes; Fourth, changes of seabed soil parameters (shear elastic modulus, internal friction angle, density) have less influence on the suspended pipeline's dent depths and maximum vibration amplitude,展开更多
文摘Based on ANSYS/LS-DYNA, the dynamics analysis software, and using nonlinear dynamic finite element method, the process of a submarine pipeline impacted by dropped objects is simulated, Some conclusions are drawn: First, the damage depth of suspended pipe is smaller than that of the bare pipe in case of the same fall energy, and with the increase of fall energy, the difference grows; Second, with the falling object's speed and mass rising, the deformation of pipeline intensifies at the impact site and the maximum vibration amplitude of submarine pipeline increases; Third, when the fall energy is equal, the smaller the contact area of falling objects and pipeline is, the greater the damage depth of pipeline becomes; Fourth, changes of seabed soil parameters (shear elastic modulus, internal friction angle, density) have less influence on the suspended pipeline's dent depths and maximum vibration amplitude,