The limit of rotational energy transfer in atom-diatomic systems due to inelastic collision was investigated over the wide range of collision energy, reduced mass and potential parameters of F2-He system. The IICS (i...The limit of rotational energy transfer in atom-diatomic systems due to inelastic collision was investigated over the wide range of collision energy, reduced mass and potential parameters of F2-He system. The IICS (integral inelastic cross-sections) is obtained by the IOSAM (infinite order sudden approximation method) and predicted by PG (power-gap) law in the variation of cross-sections. The investigation provided that the classical limit of angular momentum transfer is given by hard ellipsoid potential is meaningful even the cross-sections computed on the real potential, provided the classical turning point on the surface of soft potential is assumed as hard potential surface.展开更多
Using the Ultrarelativistic Quantum Molecular Dynamics(UrQMD) model,the balance energies of free neutrons,free protons and Z=1 particles(including free protons,deuterons and tritons) from mass symmetric heavy-ion coll...Using the Ultrarelativistic Quantum Molecular Dynamics(UrQMD) model,the balance energies of free neutrons,free protons and Z=1 particles(including free protons,deuterons and tritons) from mass symmetric heavy-ion collisions with isotopes,isobars and isotones are studied.The influence of nuclear symmetry potential energy on the balance energy is emphasized.It is found that the balance energy of free neutrons is sensitive to the nuclear symmetry energy,while that of free protons is not.Particularly,the initial neutron/proton ratio dependence of the balance energy of free neutrons from Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy.展开更多
文摘The limit of rotational energy transfer in atom-diatomic systems due to inelastic collision was investigated over the wide range of collision energy, reduced mass and potential parameters of F2-He system. The IICS (integral inelastic cross-sections) is obtained by the IOSAM (infinite order sudden approximation method) and predicted by PG (power-gap) law in the variation of cross-sections. The investigation provided that the classical limit of angular momentum transfer is given by hard ellipsoid potential is meaningful even the cross-sections computed on the real potential, provided the classical turning point on the surface of soft potential is assumed as hard potential surface.
基金supported by the National Natural Science Foundation of China(Grant Nos.10905021,10979023 and 11175074)the Zhejiang Provincial Natural Science Foundation of China(Grant No. Y6090210)the Qian-Jiang Talents Project of Zhejiang Province (Grant No.2010R10102)
文摘Using the Ultrarelativistic Quantum Molecular Dynamics(UrQMD) model,the balance energies of free neutrons,free protons and Z=1 particles(including free protons,deuterons and tritons) from mass symmetric heavy-ion collisions with isotopes,isobars and isotones are studied.The influence of nuclear symmetry potential energy on the balance energy is emphasized.It is found that the balance energy of free neutrons is sensitive to the nuclear symmetry energy,while that of free protons is not.Particularly,the initial neutron/proton ratio dependence of the balance energy of free neutrons from Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy.