Collisions between hot H atoms and CO2 molecules were studied experimentally by time resolved Fourier transform infrared emission spectroscopy. H atoms with three translational energies, 174.7, 241.0 and 306.2 k J/mol...Collisions between hot H atoms and CO2 molecules were studied experimentally by time resolved Fourier transform infrared emission spectroscopy. H atoms with three translational energies, 174.7, 241.0 and 306.2 k J/mol respectively, were generated by UV laser photolysis to initiate a chemical reaction of H+CO2→OH+CO. Vibrationally excited CO (v≤2) was observed in the spectrum, where CO was the product of the reaction. The highly efficient T-V energy transfer fro,n the hot H atoms to the CO2 was verified too. The highest vibrational level of v=4 in CO2 (va) was found. Rate ratio of the chemical reaction to the energy transfer was estimated as 10.展开更多
基金supported by the National Natural Science Foundation of China and the National Basic Research Program of China(973 Program).
文摘Collisions between hot H atoms and CO2 molecules were studied experimentally by time resolved Fourier transform infrared emission spectroscopy. H atoms with three translational energies, 174.7, 241.0 and 306.2 k J/mol respectively, were generated by UV laser photolysis to initiate a chemical reaction of H+CO2→OH+CO. Vibrationally excited CO (v≤2) was observed in the spectrum, where CO was the product of the reaction. The highly efficient T-V energy transfer fro,n the hot H atoms to the CO2 was verified too. The highest vibrational level of v=4 in CO2 (va) was found. Rate ratio of the chemical reaction to the energy transfer was estimated as 10.