Using Object-oriented design and a new programming language JAVA, a physically-based model was built to simulate the hydrological, alkalization/de-alkalization and salinization/desalinization processes in soil. Furthe...Using Object-oriented design and a new programming language JAVA, a physically-based model was built to simulate the hydrological, alkalization/de-alkalization and salinization/desalinization processes in soil. Furthermore, a process-based model was built to evaluate the dynamics of four herbaceous ecosystems (including dynamics of above-ground biomass, below-ground biomass, and litter biomass), each dominated by Aneurolepidium chinense (Trin.) Kitag., Chloris virgata Sw., Puccinellia tenuiflora (Turcz.) Scribn. et Merr. and Suaeda glauca Bunge. This model is a daily-time step model, suitable for simulating hydrological, alkalization/de-alkalization and salinization/desalinization processes of heterogeneous soil, and growth dynamics of different grassland communities. With climatic data and experimental data of Changling Experimental Site in Jilin Province, the soil moisture content (in 1991, 1996, 1997 and 1998), soil salt concentration, exchangeable cation percentage and pH in soil and growth dynamics of these four sorts of grassland communities (in 1991) were simulated and the results were verified to be in accord with observed data.展开更多
A series of mixed oxide catalysts with different composition of Co-M-Al and Co-M-Ce- Al (M=Zn, Ni, Cu) were prepared by co-precipitation method from hydrotalcite-like compounds. The experimental results revealed the...A series of mixed oxide catalysts with different composition of Co-M-Al and Co-M-Ce- Al (M=Zn, Ni, Cu) were prepared by co-precipitation method from hydrotalcite-like compounds. The experimental results revealed the catalytic activity of Co-Ni-Al is slightly higher than that of Co-Zn-Al and much higher than that of Co-Cu-Al for direct decomposition of N2O. Moreover, addition of small amounts of Ce02 improved the catalytic activity signif- icantly and made the decomposition temperatures at which the N2O conversion was 50% and 90% (T50 and Tgo) both decreased 80 ℃ than those of Co-M-Al catalysts without CeO2 added. Further, potassium-load also promoted the catalytic activity, and the decomposi- tion temperatures of T50 and T90 both decreased approximately 50 ℃. It is significant for decomposing N2O from industries and reducing carbon emission from atmosphere.展开更多
[Objective] This study aimed to investigate the effects of different pretreat- ments on enzymatic saccharification of Miscanthus sinensis and improve reducing sugar yield in the enzymolysis process. [Method] M. sinens...[Objective] This study aimed to investigate the effects of different pretreat- ments on enzymatic saccharification of Miscanthus sinensis and improve reducing sugar yield in the enzymolysis process. [Method] M. sinensis was pretreated with 60Co y-ray irradiation and alkaline hydrogen peroxide, to analyze their effects on re- ducing sugar yield of enzymatic hydrolysis. [Result] After pretreatment with 400 kGy 60Co y-ray irradiation, reducing sugar yield in the enzymolysis process of M sinensis was 76.24 mg/g; after synergic pretreatment with 400 kGy 60Co y-ray irradiation and alkaline hydrogen peroxide, reducing sugar yield in the enzymolysis process of M. sinensis was 505.08 mg/g, which was improved by 5.6 times compared to that in pretreatment with 400 kGy 60Co y-ray irradiation. Based on process optimization, the optimal hydrolysis conditions were obtained: pretreatment temperature 30 ℃, NaOH concentration 1.2%, hydrogen peroxide concentration 2%, pretreatment time 6 h. [Conclusion] Synergic pretreatment with 60Co y-ray irradiation and alkaline hydrogen peroxide could significantly improve reducing sugar yield in the enzymolysis process of M. sinensis, which provided a new theoretical basis for preparing fuel ethanol with M. sinensis.展开更多
Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene s...Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.展开更多
The assessment of hydrochemical quality of groundwater is very important to explore its nature and usefulness. In this paper, groundwater quality evaluation is carried out in the Balad district, Salah Al-Din Governora...The assessment of hydrochemical quality of groundwater is very important to explore its nature and usefulness. In this paper, groundwater quality evaluation is carried out in the Balad district, Salah Al-Din Governorate, Iraq. A total of 28 groundwater samples are collected from shallow tube wells and analyzed for various physicochemical parameters. Groundwater suitability for drinking is evaluated based on the World Health Organization(WHO) and Iraqi standards, and suitability of groundwater for irrigation is assessed based on various hydrochemical parameters. The results reveal that the dominant types of groundwater based on piper diagram are mixed CaMgCl and CaCl. Gibbs ratio indicates that the groundwater in the studied area is affected by the evaporation process. The cation-anion exchange reaction in the studied area demonstrates that 54% of the groundwater samples indicate a direct base(cation-anion) exchange reaction, while 46% of the groundwater samples indicating the chloro-alkaline disequilibrium. Furthermore, generally all of the groundwater samples are unsuitable for drinking and irrigation. Cluster analysis reveals two different groups of similarities between the groundwater samples, reflecting different pollution levels in the studied area.展开更多
Continuous monitoring of salt and water movement in the soil profile of highly salinized topsoil under steadystate infiltration was conducted.It gives that salt and water dynamics during convection-diffusion period ca...Continuous monitoring of salt and water movement in the soil profile of highly salinized topsoil under steadystate infiltration was conducted.It gives that salt and water dynamics during convection-diffusion period can be divided into three stages:1.formation of a salt peak,2.the salt peak moving downwards till the appearance of the summit of the salt peak,3.the salt peak moving further downwards with the peak value decreasing.Results show that the maximum salt peak appears at the same depth if soil texture and outflow condition are the same.Factors affecting salt and water movement and ion components in the outflow solution underinfiltration are discussed.展开更多
Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllabl...Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllable synthesis remains a challenge.Here,self-assembled ultralow Ru,Ni-doped Fe_(2)O_(3) with a lily shaped morphology was synthesized on iron foam(RuNi-Fe_(2)O_(3)/IF)via a facile one-step hydrothermal process,in which the intact lily shaped RuNi-Fe_(2)O_(3)/IF was obtained by adjusting the ratio of Ru/Ni.Benefitting from the Ru/Ni chemical substitution,the as-synthesized RuNi-Fe_(2)O_(3)/IF can act as free-standing dual-function electrodes that are applied to electrocatalysis for the hydrogen evolution(HER)and oxygen evolution reactions(OER)in 1.0 mol L^(-1) KOH,requiring an overpotential of 75.0 mV to drive 100 mA cm^(-2) for HER and 329.0 mV for OER.Moreover,the overall water splitting catalyzed by RuNi-Fe_(2)O_(3)/IF only demands ultralow cell voltages of 1.66 and 1.73 V to drive 100 mA cm^(-2) in 1.0 mol L^(-1) KOH and 1.0 mol L^(-1) KOH seawater electrolytes,respectively.The electrodes show remarkable long-term durability,maintaining current densities exceeding 100 mA cm^(-2) for more than 100 h and thus outperforming the two-electrode system composed of noble catalysts.This work provides an efficient,economical method to synthesize self-standing bifunctional electrodes for large-current-density alkaline seawater electrolysis,which is of significant importance for ecological protection and energy exploitation.展开更多
Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a...Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a centrifugation and filtration technique.Meal speciation in the soil solution was determined by a cationexchange resin method. Acetic acid and EDTA extracting solutions wereused for extraction of metals in soil solid surfaces. Metaldistribution in different fractions of soil solid phase wasdetermined using a three-step sequential extraction scheme.展开更多
This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied....This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.展开更多
Solid-aqueous interfaces and phenomena occurring at those interfaces are ubiquitously found in a plethora of chemical systems.When it comes to heterogeneous catalysis,however,our understanding of chemical transformati...Solid-aqueous interfaces and phenomena occurring at those interfaces are ubiquitously found in a plethora of chemical systems.When it comes to heterogeneous catalysis,however,our understanding of chemical transformations at solid-aqueous interfaces is relatively limited and primitive.This review phenomenologically describes a selection of water-engendered effects on the catalytic behavior for several prototypical acid-base-catalyzed reactions over solid catalysts,and critically assesses the general and special roles of water molecules,structural moieties derived from water,and ionic species that are dissolved in it,with an aim to extract novel concepts and principles that underpin heterogeneous acid-base catalysis in the aqueous phase.For alcohol dehydration catalyzed by solid Bronsted acids,rate inhibition by water is most typically related to the decrease in the acid strength and/or the preferential solvation of adsorbed species over the transition state as water molecules progressively solvate the acid site and form extended networks wherein protons are mobilized.Water also inhibits dehydration kinetics over most Lewis acid-base catalysts by competitive adsorption,but a few scattered reports reveal substantial rate enhancements due to the conversion of Lewis acid sites to Brønsted acid sites with higher catalytic activities upon the introduction of water.For aldol condensation on catalysts exposing Lewis acid-base pairs,the addition of water is generally observed to enhance the rate when C–C coupling is rate-limiting,but may result in rate inhibition by site-blocking when the initial unimolecular deprotonation is rate-limiting.Water can also promote aldol condensation on Brønsted acidic catalysts by facilitating inter-site communication between acid sites through hydrogen-bonding interactions.For metallozeolite-catalyzed sugar isomerization in aqueous media,the nucleation and networking of intrapore waters regulated by hydrophilic entities causes characteristic enthalpy-entropy tradeoffs as these water moieties interact with kinetically relevant hydride transfer transition states.The discussed examples collectively highlight the utmost importance of hydrogen-bonding interactions and ionization of covalently bonded surface moieties as the main factors underlying the uniqueness of water-mediated interfacial acid-base chemistries and the associated solvation effects in the aqueous phase or in the presence of water.A perspective is also provided for future research in this vibrant field.展开更多
Supercritical water has been focused on as an environmentally attractive reaction media, in which organic materials can be decomposed into smaller molecules. The reaction behavior of pyrrole as a simple model compound...Supercritical water has been focused on as an environmentally attractive reaction media, in which organic materials can be decomposed into smaller molecules. The reaction behavior of pyrrole as a simple model compound of nonbasic nitrogen compounds found in petroleum residua was studied in supercritical water with a batch type reactor. The reaction was carried out at temperatures of 698-748 K and at various pressures under an argon atmosphere. The chemical species in the aqueous products were identified by GCMS (gas chromatography mass spectrometry) and quantified using GC-FID (gas chromatography flame ionization detector). The effect of temperature and reaction time on the conversion process of pyrrole is presented. Under supercritical water conditions, pyrrole underwent successful decomposition in water into its derived compounds. The conversion of pyrrole could approach 81.12 wt% at 723 K and 40 MPa within 240 min of reaction time. The decomposition process was accelerated with the existence of water at the same temperature. Ultimate analysis of solid products was also conducted using a CHN analyzer. The process investigated in this study may form the basis for an efficient method of nitrogen compound decomposition in future.展开更多
The study area is located in a Mediterranean region, so the effects of the climate variations are very important. The authors contribution to this subject is based on the compilation of many results obtained from diss...The study area is located in a Mediterranean region, so the effects of the climate variations are very important. The authors contribution to this subject is based on the compilation of many results obtained from dissertations and theses that are carried out under their supervision. The main tool used, in addition to other methods, is the water hydrochemistry as it is proved very useful in obtaining good results and helpful in getting objective interpretations regarding the presence and absence of salinity. Several factors are undertaken to show the presence of salts in waters in the plain, the lithology of the geological formations shows that they are composed of alluvium sediments where the permeability is quite high, and this enables hydraulic communication between the fresh water of the aquifer and saline water of the sea. The study of climate shows a decrease of precipitation which favors an important decrease of recharge rate to the aquifer, and hence a decrease of water resource. The strontium which is a good indicator for the origin of salinity shows a variation that indicates a variation in the distribution of the salinity, and therefore diverse origins of salinity all over the studied area. This can infer the presence of marine invasion in the down-stream part of the aquifer, whereas elsewhere salinity is caused by the presence of evaporitic formation, mainly by the argillaceous matrix in the bottom of the lake. in the up-stream part of the aquifer. In the lake, salinity is explained展开更多
Catalysts CuOx/γ,-Al2O3-IH and CuOx/γ/-Al2O3-IM were prepared, characterized, and tested for styrene combustion in the absence and presence of water vapor. The effect of copper valence of the catalysts on the cataly...Catalysts CuOx/γ,-Al2O3-IH and CuOx/γ/-Al2O3-IM were prepared, characterized, and tested for styrene combustion in the absence and presence of water vapor. The effect of copper valence of the catalysts on the catalytic activity for styrene combustion was discussed using the theory of hard soft acids and bases (HSAB). The results showed that the existence of water vapor in feed stream inhibited the catalytic activity for styrene combustion due to the competition adsorption of water molecule. HSAB theory confirmed that the local soft acidity of the catalyst CuOx/^-AI203-1H was much stronger than that of the catalyst CuOx/^-AI203-1M because of the higher content of soft acid Cu+ on its surface, which increased the adsorption ability toward soft base of styrene and reduced the adsorption toward hard base of water vapor, and thus increased the catalytic activity for styrene combustion and weakened the negative influence of water vapor.展开更多
In the Lower Cheliff Plain (northwestern of Algeria), the waters resources are limited; the adoption of a rational approach in the management of irrigation water in the irrigated perimeter poses an inequality in the...In the Lower Cheliff Plain (northwestern of Algeria), the waters resources are limited; the adoption of a rational approach in the management of irrigation water in the irrigated perimeter poses an inequality in the balance between supply and demand. The two surface water resources, Gargar and Merdjet Sidi Abed dams, do not satisfy the requirements of agriculture water. According to the National Office of the Irrigation and Drainage data, the quantity of allocated water is never distributed; the difference between allocated water and drop water can also exceed 20%, and then, another problem of management is that the water losses in the distribution can reach 20% again. The shortage irrigation water resource allocated has constrained the farmers to use groundwater. The chemical analysis of 56 simples to this water showed a significant chemical diversity in the compositions. There is a high salinity risk (C3 class) or very high risk (C4 class) of soil salinisation. A space chart distribution to the EC water probability to exceed 2.25 dS/m interpolated by the indicator kriging method showed that 78% of the groundwater surface presents a significant probability to exceed this limit. The average value of the SAR (sodium adsorption ratio) is lower than 10 that indicates a moderate risk of sodisation. This observation is in contradiction with the high values of the SAR measured in the soil solution. The approach of residual alkalinity (RSC) shows that a good number of drillings analyzed presents a positive sign RSC (RSC 〉 0). This water presents a real danger of sodisation. They have a low salinity, which, for a farmer, does not present any danger.展开更多
Soil salinization may negatively affect microbial processes related to carbon dioxide (CO2) and nitrous oxide (N20) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects...Soil salinization may negatively affect microbial processes related to carbon dioxide (CO2) and nitrous oxide (N20) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects of soil electrical conductivity (EC) and moisture content on CO2 and N20 emissions from sulfate-based natural saline soils. Three separate 100-m long transects were established along the salinity gradient on a salt-affected agricultural field at Mooreton, North Dakota, USA. Surface soils were collected from four equally spaced sampling positions within each transect, at the depths of 0-15 and 15-30 cm. In the laboratory, artificial soil cores were formed combining soils from both the depths in each transect, and incubated at 60% and 90% water-filled pore space (WFPS) at 25 ~C. The measured depth-weighted EC of the saturated paste extract (ECe) across the sampling positions ranged from 0.43 to 4.65 dS m-1. Potential nitrogen (N) mineralization rate and CO2 emissions decreased with increasing soil ECe, but the relative decline in soil CO2 emissions with increasing ECe was smaller at 60% WFPS than at 90% WFPS. At 60% WFPS, soil N20 emissions decreased from 133 g N20-N kg-1 soil at ECe ( 0.50 dS m-1 to 72 μg N20-N kg-1 soil at ECe = 4.65 dS m-1. In contrast, at 90% WFPS, soil N20 emissions increased from 262 g N20-N kg-1 soil at ECe : 0.81 dS m-1 to 849 g N20-N kg-1 soil at ECe : 4.65 dS m-1, suggesting that N20 emissions were linked to both soil ECe and moisture content. Therefore, spatial variability in soil ECe and pattern of rainfall over the season need to be considered when up-scaling N20 and CO2 emissions from field to landscape scales.展开更多
文摘Using Object-oriented design and a new programming language JAVA, a physically-based model was built to simulate the hydrological, alkalization/de-alkalization and salinization/desalinization processes in soil. Furthermore, a process-based model was built to evaluate the dynamics of four herbaceous ecosystems (including dynamics of above-ground biomass, below-ground biomass, and litter biomass), each dominated by Aneurolepidium chinense (Trin.) Kitag., Chloris virgata Sw., Puccinellia tenuiflora (Turcz.) Scribn. et Merr. and Suaeda glauca Bunge. This model is a daily-time step model, suitable for simulating hydrological, alkalization/de-alkalization and salinization/desalinization processes of heterogeneous soil, and growth dynamics of different grassland communities. With climatic data and experimental data of Changling Experimental Site in Jilin Province, the soil moisture content (in 1991, 1996, 1997 and 1998), soil salt concentration, exchangeable cation percentage and pH in soil and growth dynamics of these four sorts of grassland communities (in 1991) were simulated and the results were verified to be in accord with observed data.
文摘A series of mixed oxide catalysts with different composition of Co-M-Al and Co-M-Ce- Al (M=Zn, Ni, Cu) were prepared by co-precipitation method from hydrotalcite-like compounds. The experimental results revealed the catalytic activity of Co-Ni-Al is slightly higher than that of Co-Zn-Al and much higher than that of Co-Cu-Al for direct decomposition of N2O. Moreover, addition of small amounts of Ce02 improved the catalytic activity signif- icantly and made the decomposition temperatures at which the N2O conversion was 50% and 90% (T50 and Tgo) both decreased 80 ℃ than those of Co-M-Al catalysts without CeO2 added. Further, potassium-load also promoted the catalytic activity, and the decomposi- tion temperatures of T50 and T90 both decreased approximately 50 ℃. It is significant for decomposing N2O from industries and reducing carbon emission from atmosphere.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2012AA101804)~~
文摘[Objective] This study aimed to investigate the effects of different pretreat- ments on enzymatic saccharification of Miscanthus sinensis and improve reducing sugar yield in the enzymolysis process. [Method] M. sinensis was pretreated with 60Co y-ray irradiation and alkaline hydrogen peroxide, to analyze their effects on re- ducing sugar yield of enzymatic hydrolysis. [Result] After pretreatment with 400 kGy 60Co y-ray irradiation, reducing sugar yield in the enzymolysis process of M sinensis was 76.24 mg/g; after synergic pretreatment with 400 kGy 60Co y-ray irradiation and alkaline hydrogen peroxide, reducing sugar yield in the enzymolysis process of M. sinensis was 505.08 mg/g, which was improved by 5.6 times compared to that in pretreatment with 400 kGy 60Co y-ray irradiation. Based on process optimization, the optimal hydrolysis conditions were obtained: pretreatment temperature 30 ℃, NaOH concentration 1.2%, hydrogen peroxide concentration 2%, pretreatment time 6 h. [Conclusion] Synergic pretreatment with 60Co y-ray irradiation and alkaline hydrogen peroxide could significantly improve reducing sugar yield in the enzymolysis process of M. sinensis, which provided a new theoretical basis for preparing fuel ethanol with M. sinensis.
基金supported by the National Natural Science Foundation of China (21173089 and 21373093)the Fundamental Research Funds for the Central Universities of China (2014ZZGH019)the Cooperative Innovation Center of Hubei Province
文摘Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.
文摘The assessment of hydrochemical quality of groundwater is very important to explore its nature and usefulness. In this paper, groundwater quality evaluation is carried out in the Balad district, Salah Al-Din Governorate, Iraq. A total of 28 groundwater samples are collected from shallow tube wells and analyzed for various physicochemical parameters. Groundwater suitability for drinking is evaluated based on the World Health Organization(WHO) and Iraqi standards, and suitability of groundwater for irrigation is assessed based on various hydrochemical parameters. The results reveal that the dominant types of groundwater based on piper diagram are mixed CaMgCl and CaCl. Gibbs ratio indicates that the groundwater in the studied area is affected by the evaporation process. The cation-anion exchange reaction in the studied area demonstrates that 54% of the groundwater samples indicate a direct base(cation-anion) exchange reaction, while 46% of the groundwater samples indicating the chloro-alkaline disequilibrium. Furthermore, generally all of the groundwater samples are unsuitable for drinking and irrigation. Cluster analysis reveals two different groups of similarities between the groundwater samples, reflecting different pollution levels in the studied area.
文摘Continuous monitoring of salt and water movement in the soil profile of highly salinized topsoil under steadystate infiltration was conducted.It gives that salt and water dynamics during convection-diffusion period can be divided into three stages:1.formation of a salt peak,2.the salt peak moving downwards till the appearance of the summit of the salt peak,3.the salt peak moving further downwards with the peak value decreasing.Results show that the maximum salt peak appears at the same depth if soil texture and outflow condition are the same.Factors affecting salt and water movement and ion components in the outflow solution underinfiltration are discussed.
文摘Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllable synthesis remains a challenge.Here,self-assembled ultralow Ru,Ni-doped Fe_(2)O_(3) with a lily shaped morphology was synthesized on iron foam(RuNi-Fe_(2)O_(3)/IF)via a facile one-step hydrothermal process,in which the intact lily shaped RuNi-Fe_(2)O_(3)/IF was obtained by adjusting the ratio of Ru/Ni.Benefitting from the Ru/Ni chemical substitution,the as-synthesized RuNi-Fe_(2)O_(3)/IF can act as free-standing dual-function electrodes that are applied to electrocatalysis for the hydrogen evolution(HER)and oxygen evolution reactions(OER)in 1.0 mol L^(-1) KOH,requiring an overpotential of 75.0 mV to drive 100 mA cm^(-2) for HER and 329.0 mV for OER.Moreover,the overall water splitting catalyzed by RuNi-Fe_(2)O_(3)/IF only demands ultralow cell voltages of 1.66 and 1.73 V to drive 100 mA cm^(-2) in 1.0 mol L^(-1) KOH and 1.0 mol L^(-1) KOH seawater electrolytes,respectively.The electrodes show remarkable long-term durability,maintaining current densities exceeding 100 mA cm^(-2) for more than 100 h and thus outperforming the two-electrode system composed of noble catalysts.This work provides an efficient,economical method to synthesize self-standing bifunctional electrodes for large-current-density alkaline seawater electrolysis,which is of significant importance for ecological protection and energy exploitation.
基金National Natural Science Foundation of China(Nos.49831070 and 40125005)theNational Key Basic Research Support Foundation of China (No. G1999011807)the Jiangsu Provincial Foundation for Young Scientists (No. BQ98050).
文摘Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a centrifugation and filtration technique.Meal speciation in the soil solution was determined by a cationexchange resin method. Acetic acid and EDTA extracting solutions wereused for extraction of metals in soil solid surfaces. Metaldistribution in different fractions of soil solid phase wasdetermined using a three-step sequential extraction scheme.
文摘This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.
文摘Solid-aqueous interfaces and phenomena occurring at those interfaces are ubiquitously found in a plethora of chemical systems.When it comes to heterogeneous catalysis,however,our understanding of chemical transformations at solid-aqueous interfaces is relatively limited and primitive.This review phenomenologically describes a selection of water-engendered effects on the catalytic behavior for several prototypical acid-base-catalyzed reactions over solid catalysts,and critically assesses the general and special roles of water molecules,structural moieties derived from water,and ionic species that are dissolved in it,with an aim to extract novel concepts and principles that underpin heterogeneous acid-base catalysis in the aqueous phase.For alcohol dehydration catalyzed by solid Bronsted acids,rate inhibition by water is most typically related to the decrease in the acid strength and/or the preferential solvation of adsorbed species over the transition state as water molecules progressively solvate the acid site and form extended networks wherein protons are mobilized.Water also inhibits dehydration kinetics over most Lewis acid-base catalysts by competitive adsorption,but a few scattered reports reveal substantial rate enhancements due to the conversion of Lewis acid sites to Brønsted acid sites with higher catalytic activities upon the introduction of water.For aldol condensation on catalysts exposing Lewis acid-base pairs,the addition of water is generally observed to enhance the rate when C–C coupling is rate-limiting,but may result in rate inhibition by site-blocking when the initial unimolecular deprotonation is rate-limiting.Water can also promote aldol condensation on Brønsted acidic catalysts by facilitating inter-site communication between acid sites through hydrogen-bonding interactions.For metallozeolite-catalyzed sugar isomerization in aqueous media,the nucleation and networking of intrapore waters regulated by hydrophilic entities causes characteristic enthalpy-entropy tradeoffs as these water moieties interact with kinetically relevant hydride transfer transition states.The discussed examples collectively highlight the utmost importance of hydrogen-bonding interactions and ionization of covalently bonded surface moieties as the main factors underlying the uniqueness of water-mediated interfacial acid-base chemistries and the associated solvation effects in the aqueous phase or in the presence of water.A perspective is also provided for future research in this vibrant field.
文摘Supercritical water has been focused on as an environmentally attractive reaction media, in which organic materials can be decomposed into smaller molecules. The reaction behavior of pyrrole as a simple model compound of nonbasic nitrogen compounds found in petroleum residua was studied in supercritical water with a batch type reactor. The reaction was carried out at temperatures of 698-748 K and at various pressures under an argon atmosphere. The chemical species in the aqueous products were identified by GCMS (gas chromatography mass spectrometry) and quantified using GC-FID (gas chromatography flame ionization detector). The effect of temperature and reaction time on the conversion process of pyrrole is presented. Under supercritical water conditions, pyrrole underwent successful decomposition in water into its derived compounds. The conversion of pyrrole could approach 81.12 wt% at 723 K and 40 MPa within 240 min of reaction time. The decomposition process was accelerated with the existence of water at the same temperature. Ultimate analysis of solid products was also conducted using a CHN analyzer. The process investigated in this study may form the basis for an efficient method of nitrogen compound decomposition in future.
文摘The study area is located in a Mediterranean region, so the effects of the climate variations are very important. The authors contribution to this subject is based on the compilation of many results obtained from dissertations and theses that are carried out under their supervision. The main tool used, in addition to other methods, is the water hydrochemistry as it is proved very useful in obtaining good results and helpful in getting objective interpretations regarding the presence and absence of salinity. Several factors are undertaken to show the presence of salts in waters in the plain, the lithology of the geological formations shows that they are composed of alluvium sediments where the permeability is quite high, and this enables hydraulic communication between the fresh water of the aquifer and saline water of the sea. The study of climate shows a decrease of precipitation which favors an important decrease of recharge rate to the aquifer, and hence a decrease of water resource. The strontium which is a good indicator for the origin of salinity shows a variation that indicates a variation in the distribution of the salinity, and therefore diverse origins of salinity all over the studied area. This can infer the presence of marine invasion in the down-stream part of the aquifer, whereas elsewhere salinity is caused by the presence of evaporitic formation, mainly by the argillaceous matrix in the bottom of the lake. in the up-stream part of the aquifer. In the lake, salinity is explained
基金Supported by the National Natural Science Foundation of China(21366008)the Foundation of Guizhou University((2010)040)the Science & Technology Foundation of Guizhou Province((2012)2152)
文摘Catalysts CuOx/γ,-Al2O3-IH and CuOx/γ/-Al2O3-IM were prepared, characterized, and tested for styrene combustion in the absence and presence of water vapor. The effect of copper valence of the catalysts on the catalytic activity for styrene combustion was discussed using the theory of hard soft acids and bases (HSAB). The results showed that the existence of water vapor in feed stream inhibited the catalytic activity for styrene combustion due to the competition adsorption of water molecule. HSAB theory confirmed that the local soft acidity of the catalyst CuOx/^-AI203-1H was much stronger than that of the catalyst CuOx/^-AI203-1M because of the higher content of soft acid Cu+ on its surface, which increased the adsorption ability toward soft base of styrene and reduced the adsorption toward hard base of water vapor, and thus increased the catalytic activity for styrene combustion and weakened the negative influence of water vapor.
文摘In the Lower Cheliff Plain (northwestern of Algeria), the waters resources are limited; the adoption of a rational approach in the management of irrigation water in the irrigated perimeter poses an inequality in the balance between supply and demand. The two surface water resources, Gargar and Merdjet Sidi Abed dams, do not satisfy the requirements of agriculture water. According to the National Office of the Irrigation and Drainage data, the quantity of allocated water is never distributed; the difference between allocated water and drop water can also exceed 20%, and then, another problem of management is that the water losses in the distribution can reach 20% again. The shortage irrigation water resource allocated has constrained the farmers to use groundwater. The chemical analysis of 56 simples to this water showed a significant chemical diversity in the compositions. There is a high salinity risk (C3 class) or very high risk (C4 class) of soil salinisation. A space chart distribution to the EC water probability to exceed 2.25 dS/m interpolated by the indicator kriging method showed that 78% of the groundwater surface presents a significant probability to exceed this limit. The average value of the SAR (sodium adsorption ratio) is lower than 10 that indicates a moderate risk of sodisation. This observation is in contradiction with the high values of the SAR measured in the soil solution. The approach of residual alkalinity (RSC) shows that a good number of drillings analyzed presents a positive sign RSC (RSC 〉 0). This water presents a real danger of sodisation. They have a low salinity, which, for a farmer, does not present any danger.
文摘Soil salinization may negatively affect microbial processes related to carbon dioxide (CO2) and nitrous oxide (N20) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects of soil electrical conductivity (EC) and moisture content on CO2 and N20 emissions from sulfate-based natural saline soils. Three separate 100-m long transects were established along the salinity gradient on a salt-affected agricultural field at Mooreton, North Dakota, USA. Surface soils were collected from four equally spaced sampling positions within each transect, at the depths of 0-15 and 15-30 cm. In the laboratory, artificial soil cores were formed combining soils from both the depths in each transect, and incubated at 60% and 90% water-filled pore space (WFPS) at 25 ~C. The measured depth-weighted EC of the saturated paste extract (ECe) across the sampling positions ranged from 0.43 to 4.65 dS m-1. Potential nitrogen (N) mineralization rate and CO2 emissions decreased with increasing soil ECe, but the relative decline in soil CO2 emissions with increasing ECe was smaller at 60% WFPS than at 90% WFPS. At 60% WFPS, soil N20 emissions decreased from 133 g N20-N kg-1 soil at ECe ( 0.50 dS m-1 to 72 μg N20-N kg-1 soil at ECe = 4.65 dS m-1. In contrast, at 90% WFPS, soil N20 emissions increased from 262 g N20-N kg-1 soil at ECe : 0.81 dS m-1 to 849 g N20-N kg-1 soil at ECe : 4.65 dS m-1, suggesting that N20 emissions were linked to both soil ECe and moisture content. Therefore, spatial variability in soil ECe and pattern of rainfall over the season need to be considered when up-scaling N20 and CO2 emissions from field to landscape scales.