Epigenetic changes caused by DNA methylation and histone modifications play important roles in the regulation of various cellular processes and development. Recent discoveries of 5-methylcytosine(5m C) oxidation deriv...Epigenetic changes caused by DNA methylation and histone modifications play important roles in the regulation of various cellular processes and development. Recent discoveries of 5-methylcytosine(5m C) oxidation derivatives including 5-hydroxymethylcytosine(5hm C), 5-formylcytsine(5f C) and 5-carboxycytosine(5ca C) in mammalian genome further expand our understanding of the epigenetic regulation. Analysis of DNA modification patterns relies increasingly on sequencing-based profiling methods. A number of different approaches have been established to map the DNA epigenomes with single-base resolution, as represented by the bisulfite-based methods, such as classical bisulfite sequencing(BS-seq), TAB-seq(TET-assisted bisulfite sequencing), ox BS-seq(oxidative bisulfite sequencing) and etc. These methods have been used to generate base-resolution maps of 5m C and its oxidation derivatives in genomic samples. The focus of this review will be to discuss the chemical methodologies that have been developed to detect the cytosine derivatives in the genomic DNA.展开更多
基金supported by the National Basic Research Foundation of China(2014CB964900 to Yi Chengqi)the National Natural Science Foundation of China(3127083821472009 to Yi Chengqi)
文摘Epigenetic changes caused by DNA methylation and histone modifications play important roles in the regulation of various cellular processes and development. Recent discoveries of 5-methylcytosine(5m C) oxidation derivatives including 5-hydroxymethylcytosine(5hm C), 5-formylcytsine(5f C) and 5-carboxycytosine(5ca C) in mammalian genome further expand our understanding of the epigenetic regulation. Analysis of DNA modification patterns relies increasingly on sequencing-based profiling methods. A number of different approaches have been established to map the DNA epigenomes with single-base resolution, as represented by the bisulfite-based methods, such as classical bisulfite sequencing(BS-seq), TAB-seq(TET-assisted bisulfite sequencing), ox BS-seq(oxidative bisulfite sequencing) and etc. These methods have been used to generate base-resolution maps of 5m C and its oxidation derivatives in genomic samples. The focus of this review will be to discuss the chemical methodologies that have been developed to detect the cytosine derivatives in the genomic DNA.