应用量子化学方法,分别在气相和水溶液中对氨基酸侧链与氧化鸟嘌呤碱基对(8-oxo-G∶C)形成的三体复合物的氢键键能、几何结构、电荷分布及二阶稳定化能进行了研究.结果表明,水溶液的存在削弱了复合物中的氢键强度,电荷分布变化明显,水...应用量子化学方法,分别在气相和水溶液中对氨基酸侧链与氧化鸟嘌呤碱基对(8-oxo-G∶C)形成的三体复合物的氢键键能、几何结构、电荷分布及二阶稳定化能进行了研究.结果表明,水溶液的存在削弱了复合物中的氢键强度,电荷分布变化明显,水溶液中形成氢键位点的电荷变化量约为气相中的10倍,而几何结构变化不明显、对于酶与DNA之间的相互作用的研究需在水溶液中进行.水溶液对带电三体复合物中8-oxo-G∶C与氨基酸侧链间的氢键有较大影响,键能平均减小了69.23 k J/mol,不带电复合物仅减小了3.60k J/mol.水溶液中三体复合物中8-oxo-G∶C间的氢键受侧链的影响不大,且与侧链带电与否无关,带电复合物和不带电复合物的氢键强度分别减小了24.57和30.05 k J/mol,且二阶稳定化能越大,其对应的氢键键长越短.展开更多
[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (D...[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (DS)were obtained by etherizing chito-oligosacchaside. Their structure and substituted degree were characterized and their antioxldant activity to·OH was evaluated. [ Result] The IC50 s of NOA ,NOB and NOC were 0.15 ,0. 29 ,0. 23 mg/ml while their DSs of -NH2 position(DSN) were 0.51,0.29 and 0.38 and DSo were 0. 74 ,0. 84 ,0. 97respectively.[ Conclusion] With the increase of DSN ,antioxidant activity of N,O-carboxymethyl chitosan oligosaccharide to·OH was up.展开更多
ZrO2-based mixed metal oxide catalysts for the industrially important dehydrogenation process of ethylbenzene to styrene monomer have been explored by our group for the past 20 years.These efforts were subjected to th...ZrO2-based mixed metal oxide catalysts for the industrially important dehydrogenation process of ethylbenzene to styrene monomer have been explored by our group for the past 20 years.These efforts were subjected to the activation of CO2 over mixed metal oxide catalysts and resulted in several promising benefits to the dehydrogenation processes,such as stabilized conversion and selectivity,suppressed coke formation and commercially-acceptable longevity.In this review,we summarize the most recent developments on ZrO2-based mixed metal oxide catalysts,including the further optimization of sol-gel process in the synthesis of catalysts,rationalizing acid-base properties by doping,co-operative properties between redox and acid-base active sites and additional promoters towards the effective improvement of the longevity of catalysts.展开更多
Alcalase hydrolyzed protein from Anchovy under controlled condition, and the hydrolysates were rich in active peptides. The peptide content was determined by TCA-biuret method, and amino acid was determined by Ninhydr...Alcalase hydrolyzed protein from Anchovy under controlled condition, and the hydrolysates were rich in active peptides. The peptide content was determined by TCA-biuret method, and amino acid was determined by Ninhydrin. The antioxidative activity of the hydrolysates was investigated by measuring the reducing ability, the inhibition of lipoxygenase activity, and antioxidative ability in linoleic acid oxidation system. The hydrolysates exhibited high antioxidative activity. In addition, the hydrolysates scavenged 58.38% on hydroxyl radical and 46.88% on superoxide radical.展开更多
Various amino acid esters were reacted with different isothiocyanates in alkaline Al2O3 at room temperature for 1 h affording thiohydantoins in moderate to excellent yields.
There has been increasing interest in devel- oping micro/nanostructured aluminum-based materials for sustainable, dependable and high-efficiency electro- chemical energy storage. This review chiefly discusses the alum...There has been increasing interest in devel- oping micro/nanostructured aluminum-based materials for sustainable, dependable and high-efficiency electro- chemical energy storage. This review chiefly discusses the aluminum-based electrode materials mainly including A1203, AIF3, AIPO4, AI(OH)3, as well as the composites (carbons, silicons, metals and transition metal oxides) for lithium-ion batteries, the development of aluminum-ion batteries, and nickel-metal hydride alkaline secondary batteries, which summarizes the methodologies, related charge-storage mechanisms, the relationship between nanos- tructures and electrochemical properties found in recent years, latest research achievements and their potential ap- plications. In addition, we raise the relevant challenges in recently developed electrode materials and put forward new ideas for further development of micro/nanostructured aluminum-based materials in advanced battery systems.展开更多
文摘应用量子化学方法,分别在气相和水溶液中对氨基酸侧链与氧化鸟嘌呤碱基对(8-oxo-G∶C)形成的三体复合物的氢键键能、几何结构、电荷分布及二阶稳定化能进行了研究.结果表明,水溶液的存在削弱了复合物中的氢键强度,电荷分布变化明显,水溶液中形成氢键位点的电荷变化量约为气相中的10倍,而几何结构变化不明显、对于酶与DNA之间的相互作用的研究需在水溶液中进行.水溶液对带电三体复合物中8-oxo-G∶C与氨基酸侧链间的氢键有较大影响,键能平均减小了69.23 k J/mol,不带电复合物仅减小了3.60k J/mol.水溶液中三体复合物中8-oxo-G∶C间的氢键受侧链的影响不大,且与侧链带电与否无关,带电复合物和不带电复合物的氢键强度分别减小了24.57和30.05 k J/mol,且二阶稳定化能越大,其对应的氢键键长越短.
基金Supported by Shanghai Leading Academic Discipline(Project No.T1102)Shanghai Commission of Education Scientific Research Project(07zz134)~~
文摘[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (DS)were obtained by etherizing chito-oligosacchaside. Their structure and substituted degree were characterized and their antioxldant activity to·OH was evaluated. [ Result] The IC50 s of NOA ,NOB and NOC were 0.15 ,0. 29 ,0. 23 mg/ml while their DSs of -NH2 position(DSN) were 0.51,0.29 and 0.38 and DSo were 0. 74 ,0. 84 ,0. 97respectively.[ Conclusion] With the increase of DSN ,antioxidant activity of N,O-carboxymethyl chitosan oligosaccharide to·OH was up.
基金funded by Saudi Arabia Basic Industries Corporation(Kingdom of Saudi Arabia),the BK21 Plus Project in 2014
文摘ZrO2-based mixed metal oxide catalysts for the industrially important dehydrogenation process of ethylbenzene to styrene monomer have been explored by our group for the past 20 years.These efforts were subjected to the activation of CO2 over mixed metal oxide catalysts and resulted in several promising benefits to the dehydrogenation processes,such as stabilized conversion and selectivity,suppressed coke formation and commercially-acceptable longevity.In this review,we summarize the most recent developments on ZrO2-based mixed metal oxide catalysts,including the further optimization of sol-gel process in the synthesis of catalysts,rationalizing acid-base properties by doping,co-operative properties between redox and acid-base active sites and additional promoters towards the effective improvement of the longevity of catalysts.
文摘Alcalase hydrolyzed protein from Anchovy under controlled condition, and the hydrolysates were rich in active peptides. The peptide content was determined by TCA-biuret method, and amino acid was determined by Ninhydrin. The antioxidative activity of the hydrolysates was investigated by measuring the reducing ability, the inhibition of lipoxygenase activity, and antioxidative ability in linoleic acid oxidation system. The hydrolysates exhibited high antioxidative activity. In addition, the hydrolysates scavenged 58.38% on hydroxyl radical and 46.88% on superoxide radical.
基金National Natural Science Foundation of China(Grant No.20972005)
文摘Various amino acid esters were reacted with different isothiocyanates in alkaline Al2O3 at room temperature for 1 h affording thiohydantoins in moderate to excellent yields.
基金supported by the Program for New Century Excellent Talents of the University in China (NCET-13-0645)the National Natural Science Foundation of China (21201010, 21671170 and 21673203)+5 种基金the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (164200510018)the Program for Innovative Research Team (in Science and Technology) in the University of Henan Province (14IRTSTHN004)the Six Talent Plan (2015-XCL030)Qinglan Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Undergraduate Scientific Research Innovation Projects in Jiangsu province (201611117047Y)
文摘There has been increasing interest in devel- oping micro/nanostructured aluminum-based materials for sustainable, dependable and high-efficiency electro- chemical energy storage. This review chiefly discusses the aluminum-based electrode materials mainly including A1203, AIF3, AIPO4, AI(OH)3, as well as the composites (carbons, silicons, metals and transition metal oxides) for lithium-ion batteries, the development of aluminum-ion batteries, and nickel-metal hydride alkaline secondary batteries, which summarizes the methodologies, related charge-storage mechanisms, the relationship between nanos- tructures and electrochemical properties found in recent years, latest research achievements and their potential ap- plications. In addition, we raise the relevant challenges in recently developed electrode materials and put forward new ideas for further development of micro/nanostructured aluminum-based materials in advanced battery systems.