To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-D...To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-DE). The proteomes were compared to determine differentially expressed proteins. A novel alkaliphilic bacterium (alkaliphilic Bacillus sp. N16-5 isolated from Wudunur Soda Lake, China) was isolated in media with five different carbon sources (glucose, mannose, galactose, arabinose, and xylose). Comparative proteome analysis identified 61 differentially expressed proteins, which were mainly involved in carbohydrate metabolism, amino acid transport, and metabolism, as well as energy production and conversion. The comparison was based on the draft genome sequence of strain N16-5. The abundance of enzymes involved in central metabolism was significantly changed when exposed to various carbohydrates. Notably, catabolite control protein A (CcpA) was up-regulated under all carbon sources compared with glucose. In addition, pentose exhibited a stronger effect than hexose in CcpA-mediated carbon catabolite repression. These results provided a fundamental understanding of carbohydrate metabolism in alkaliphiles.展开更多
Soil microorganisms are known to significantly contribute to climate change through soil carbon(C)cycle feedbacks.However,it is challenging to incorporate these feedbacks into predictions of future patterns of terrest...Soil microorganisms are known to significantly contribute to climate change through soil carbon(C)cycle feedbacks.However,it is challenging to incorporate these feedbacks into predictions of future patterns of terrestrial C cycling,largely because of the vast diversity of soil microorganisms and their responses to environmental conditions.Here,we show that the composition of the bacterial community can provide information about the microbial community-level thermal response(MCTR),which drives ecosystemscale soil C-climate feedbacks.The dominant taxa from 169 sites representing a gradient from tropical to boreal forest mainly belonged to the phyla Actinobacteria and Acidobacteria.Moreover,we show that the MCTR in warm biomes and acidic soils was linked primarily to bacteria,whereas the MCTR in cold biomes and alkaline soils was primarily associated with fungi.Our results provide strong empirical evidence of linkages between microbial composition and the MCTR across a wide range of forests,and suggest the importance of specific microorganisms in regulating soil C-climate feedbacks.展开更多
基金supported by the National Basic Research Program of China, Ministry of Science and Technology of China (Grant Nos. 2007CB707801 and 2003CB716001)the National High Technology Research and Development Program of China (Grant Nos. 2006AA020201 and 2007AA021306)
文摘To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-DE). The proteomes were compared to determine differentially expressed proteins. A novel alkaliphilic bacterium (alkaliphilic Bacillus sp. N16-5 isolated from Wudunur Soda Lake, China) was isolated in media with five different carbon sources (glucose, mannose, galactose, arabinose, and xylose). Comparative proteome analysis identified 61 differentially expressed proteins, which were mainly involved in carbohydrate metabolism, amino acid transport, and metabolism, as well as energy production and conversion. The comparison was based on the draft genome sequence of strain N16-5. The abundance of enzymes involved in central metabolism was significantly changed when exposed to various carbohydrates. Notably, catabolite control protein A (CcpA) was up-regulated under all carbon sources compared with glucose. In addition, pentose exhibited a stronger effect than hexose in CcpA-mediated carbon catabolite repression. These results provided a fundamental understanding of carbohydrate metabolism in alkaliphiles.
基金supported by the National Natural Science Foundation of China(91951112,32030067,and 31830009)the Shanghai Pujiang Program(2020PJD003)the Postdoctoral Science Foundation of China(2020M670975)。
文摘Soil microorganisms are known to significantly contribute to climate change through soil carbon(C)cycle feedbacks.However,it is challenging to incorporate these feedbacks into predictions of future patterns of terrestrial C cycling,largely because of the vast diversity of soil microorganisms and their responses to environmental conditions.Here,we show that the composition of the bacterial community can provide information about the microbial community-level thermal response(MCTR),which drives ecosystemscale soil C-climate feedbacks.The dominant taxa from 169 sites representing a gradient from tropical to boreal forest mainly belonged to the phyla Actinobacteria and Acidobacteria.Moreover,we show that the MCTR in warm biomes and acidic soils was linked primarily to bacteria,whereas the MCTR in cold biomes and alkaline soils was primarily associated with fungi.Our results provide strong empirical evidence of linkages between microbial composition and the MCTR across a wide range of forests,and suggest the importance of specific microorganisms in regulating soil C-climate feedbacks.