Extractability of zinc from two types of electric arc furnace (EAF) dusts containing 24.8% and 16.8% of zinc respectively (denoted as Sample A and Sample B) were tested using direct alkaline leaching followed by fusio...Extractability of zinc from two types of electric arc furnace (EAF) dusts containing 24.8% and 16.8% of zinc respectively (denoted as Sample A and Sample B) were tested using direct alkaline leaching followed by fusion of the resulting leaching residues with caustic soda. The experimental results show that the extraction of zinc is heavily dependent on the contents of iron in the dusts. The higher iron content, the lower extraction of zinc is obtained. 53% and 38% of zinc can be extracted when both dusts were directly contacted with 5mol·L^-1 NaOH solution for 42h. The remaining zinc left in the leaching residues, which supposed to be present as zinc ferrites, can be further leached when the residues were fused with caustic soda. Quantitative extraction of zinc can be obtained from the leaching residue of Sample A while only 85% from Sample B. The extractability of zinc from dusts wit hvarious contents of iron is compared. The production flowsheet for zinc from the dusts using the process proposed is discussed.展开更多
The aim of this study was to obtain a protein isolate from Argentine anchovy (Engraulis anchoita) residue produced using the pH shifting process, with acid and alkaline solubilization and isoelectric precipitation o...The aim of this study was to obtain a protein isolate from Argentine anchovy (Engraulis anchoita) residue produced using the pH shifting process, with acid and alkaline solubilization and isoelectric precipitation of the protein, and evaluate their functional properties. The lowest solubility was obtained at pH 5 where 8.32% and 2.96% were found for acid and alkali respectively. The highest solubility was obtained at extreme pH. The maximum water holding capacity was presented by the alkaline protein isolate at pH 11 (9.63 g H20/g protein). The oil holding capacity was 4.20 mL/g protein, 7.26 mL/g of protein for the acid and alkaline protein isolates, respectively. The strain showed higher oil holding capacity in alkaline pH, lower solubility in pH near the protein isoelectric point and a lower capacity to retain water in extreme pH when compared with the acid isolate.展开更多
文摘Extractability of zinc from two types of electric arc furnace (EAF) dusts containing 24.8% and 16.8% of zinc respectively (denoted as Sample A and Sample B) were tested using direct alkaline leaching followed by fusion of the resulting leaching residues with caustic soda. The experimental results show that the extraction of zinc is heavily dependent on the contents of iron in the dusts. The higher iron content, the lower extraction of zinc is obtained. 53% and 38% of zinc can be extracted when both dusts were directly contacted with 5mol·L^-1 NaOH solution for 42h. The remaining zinc left in the leaching residues, which supposed to be present as zinc ferrites, can be further leached when the residues were fused with caustic soda. Quantitative extraction of zinc can be obtained from the leaching residue of Sample A while only 85% from Sample B. The extractability of zinc from dusts wit hvarious contents of iron is compared. The production flowsheet for zinc from the dusts using the process proposed is discussed.
文摘The aim of this study was to obtain a protein isolate from Argentine anchovy (Engraulis anchoita) residue produced using the pH shifting process, with acid and alkaline solubilization and isoelectric precipitation of the protein, and evaluate their functional properties. The lowest solubility was obtained at pH 5 where 8.32% and 2.96% were found for acid and alkali respectively. The highest solubility was obtained at extreme pH. The maximum water holding capacity was presented by the alkaline protein isolate at pH 11 (9.63 g H20/g protein). The oil holding capacity was 4.20 mL/g protein, 7.26 mL/g of protein for the acid and alkaline protein isolates, respectively. The strain showed higher oil holding capacity in alkaline pH, lower solubility in pH near the protein isoelectric point and a lower capacity to retain water in extreme pH when compared with the acid isolate.