A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.5...A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.展开更多
The study of α4β2 nicotinic receptors has provided new indications in the treatment of pain. Efforts have been made to explore new α4β2 nicotinic receptor agonists, including TC-2559, as antinociceptive drugs. In ...The study of α4β2 nicotinic receptors has provided new indications in the treatment of pain. Efforts have been made to explore new α4β2 nicotinic receptor agonists, including TC-2559, as antinociceptive drugs. In this study, we discovered a set of novel epibatidine analogs with strong binding affinities to the α4β2 nicotinic receptors. Among these compounds, C-159, C-163, and C-9515 attenuated formalin-induced nociceptive responses in mice; C-9515 caused the most potent analgesic effect, which was blocked by mecamylamine, a non-selective nicotinic receptor antagonist. Furthermore, C-9515 potently inhibited chronic constriction injury(CCI)-induced neuropathic pain in rats, which was sensitive to DHβE, a selective α4β2 subtype antagonist,indicating that its analgesic effect was mediated by the activation of the α4β2 nicotinic receptors. In conclusion, the epibatidine analog C-9515 was found to be a potent α4β2 nicotinic receptor agonist with potent analgesic function, which demonstrated potential for the further exploration of its druggability.展开更多
基金supported by the National Natural Science Foundation of China(21372087)~~
文摘A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.
基金supported by the National Natural Science Foundation of China(31471027,81400895 to Yun Wang and Weiwei Li)
文摘The study of α4β2 nicotinic receptors has provided new indications in the treatment of pain. Efforts have been made to explore new α4β2 nicotinic receptor agonists, including TC-2559, as antinociceptive drugs. In this study, we discovered a set of novel epibatidine analogs with strong binding affinities to the α4β2 nicotinic receptors. Among these compounds, C-159, C-163, and C-9515 attenuated formalin-induced nociceptive responses in mice; C-9515 caused the most potent analgesic effect, which was blocked by mecamylamine, a non-selective nicotinic receptor antagonist. Furthermore, C-9515 potently inhibited chronic constriction injury(CCI)-induced neuropathic pain in rats, which was sensitive to DHβE, a selective α4β2 subtype antagonist,indicating that its analgesic effect was mediated by the activation of the α4β2 nicotinic receptors. In conclusion, the epibatidine analog C-9515 was found to be a potent α4β2 nicotinic receptor agonist with potent analgesic function, which demonstrated potential for the further exploration of its druggability.