Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate ...Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.展开更多
The development of heterogeneous catalytic processes is crucial for the synthesis of chiral compounds for both academic and industrial applications.However,thus far,such achievements have remained elusive.Herein,we re...The development of heterogeneous catalytic processes is crucial for the synthesis of chiral compounds for both academic and industrial applications.However,thus far,such achievements have remained elusive.Herein,we report the heterogeneous asymmetric hydrogenation of 2-methylquinoline over solid chiral catalysts,which were prepared by the one-pot polymerization of(1R,2R)-N-(4-vinyl-benzenesulfonyl)-1,2-diphenylethane-1,2-diamine(VDPEN)and divinylbenzene(DVB)in the presence or absence of activated carbon(C)or carbon nanotubes(CNTs),followed by Ru coordination and anion exchange.The solid chiral catalysts were fully characterized by N2 sorption analysis,elemental analysis,TEM,FT-IR spectroscopy,and 13C CP-MAS NMR.All the solid chiral catalysts could efficiently catalyze the asymmetric hydrogenation of 2-methylquinoline to afford 2-methyl-1,2,3,4-tetrahydroquinoline with 90%ee.Studies have shown that polymer/C and polymer/CNTs composites are more active than pure polymers.The polymer/CNTs composite exhibited the highest activity among all the solid chiral catalysts under identical conditions,owing to the unique morphology of CNTs.The recycling stabilities of the solid chiral catalysts were greatly improved when ionic liquids(ILs)were employed as solvents;this is mainly attributed to the decreased leaching amount of anions owing to the confinement effect of ILs on ionic compounds.展开更多
Fano resonances in the symmetry-broken gold-SiO2-gold(BGSG)nanotubes and the associated dimers have been investigated based on the finite element method.In the BGSG nanotube,the symmetry breaking induced the interacti...Fano resonances in the symmetry-broken gold-SiO2-gold(BGSG)nanotubes and the associated dimers have been investigated based on the finite element method.In the BGSG nanotube,the symmetry breaking induced the interactions of the inner gold core and outer gold nanoshell plasmons of all multipolar orders and hence the red-shifts of the plasmon resonance modes and the enhanced quadrupole mode peaks were observed.The interference of the quadrupole mode peak with the subradiant dipole mode caused a Fano-dip in the scattering spectrum.By increasing the core offset-value in the BGSG nanotube,the Fano dip with low energy showed a red-shift and became deeper.Unexpectedly the plasmon coupling between a GSG nanotube and a BGSG nanotube can lead to two strong Fano dips in the scattering spectra of the dimer.It was further noted that the thin side of the BGSG nanotube located at two sides of the dimer gap can lead to the strong near-field coupling between two BGSG nanotubes and hence a deeper and broader Fano dip.展开更多
基金The project was supported by National Natural Science Foundation of China(21573201)the Ministry of Science and Technology of China(2016YFA0200604)and the Special Program for Applied Research on Super Computation of the National Nature Science Foundation of China-Guangdong Joint Fund(U1501501)~~
基金Supported by the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20990222) and the Natural Science Foundation of Jiangsu Province (BK2009021, SBK200930313).
文摘Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.
基金supported by the National Natural Science Foundation of China (21733009, 21621063)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020200)~~
文摘The development of heterogeneous catalytic processes is crucial for the synthesis of chiral compounds for both academic and industrial applications.However,thus far,such achievements have remained elusive.Herein,we report the heterogeneous asymmetric hydrogenation of 2-methylquinoline over solid chiral catalysts,which were prepared by the one-pot polymerization of(1R,2R)-N-(4-vinyl-benzenesulfonyl)-1,2-diphenylethane-1,2-diamine(VDPEN)and divinylbenzene(DVB)in the presence or absence of activated carbon(C)or carbon nanotubes(CNTs),followed by Ru coordination and anion exchange.The solid chiral catalysts were fully characterized by N2 sorption analysis,elemental analysis,TEM,FT-IR spectroscopy,and 13C CP-MAS NMR.All the solid chiral catalysts could efficiently catalyze the asymmetric hydrogenation of 2-methylquinoline to afford 2-methyl-1,2,3,4-tetrahydroquinoline with 90%ee.Studies have shown that polymer/C and polymer/CNTs composites are more active than pure polymers.The polymer/CNTs composite exhibited the highest activity among all the solid chiral catalysts under identical conditions,owing to the unique morphology of CNTs.The recycling stabilities of the solid chiral catalysts were greatly improved when ionic liquids(ILs)were employed as solvents;this is mainly attributed to the decreased leaching amount of anions owing to the confinement effect of ILs on ionic compounds.
基金supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.11174113,11204129 and 11274171)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(RFDP)(Grant Nos.20120091110001 and 20130091130004)Qing Lan Project of Jiangsu Province
文摘Fano resonances in the symmetry-broken gold-SiO2-gold(BGSG)nanotubes and the associated dimers have been investigated based on the finite element method.In the BGSG nanotube,the symmetry breaking induced the interactions of the inner gold core and outer gold nanoshell plasmons of all multipolar orders and hence the red-shifts of the plasmon resonance modes and the enhanced quadrupole mode peaks were observed.The interference of the quadrupole mode peak with the subradiant dipole mode caused a Fano-dip in the scattering spectrum.By increasing the core offset-value in the BGSG nanotube,the Fano dip with low energy showed a red-shift and became deeper.Unexpectedly the plasmon coupling between a GSG nanotube and a BGSG nanotube can lead to two strong Fano dips in the scattering spectra of the dimer.It was further noted that the thin side of the BGSG nanotube located at two sides of the dimer gap can lead to the strong near-field coupling between two BGSG nanotubes and hence a deeper and broader Fano dip.