Field experiments on the decomposition of organic materials and the accumulation of organic carbon ininfertile red soils were conducted at the Ecological Experimental Station of Red Soil, the Chinese Academyof Science...Field experiments on the decomposition of organic materials and the accumulation of organic carbon ininfertile red soils were conducted at the Ecological Experimental Station of Red Soil, the Chinese Academyof Sciences, and the potential of CO2 sequestration by reclamation and improving the fertility of these soils was estimated. Results showed that in infertile red soils, the humification coefficients of organic materials were rather high, ranging from 0.28 to 0.63 with an average of 0.43, which was 41% higher than those incorresponding red soils with medium fertility. This was mainly attributed to the high clay content, highacidity and low native organic matter content of infertile red soils. Compared to those in correspondingnormal red soils, the decomposition rates of organic materials were significantly lower in infertile red soilsin the first 2 yearst thereafter no significant difference was observed between those in the two kinds of soils.Depending on the kind and amount of organic manure applied, the soil properties and the rotation systems,annual application of organic manure with a rate of 4500 to 9000 kg ha-1 increased the organic carboncontent in surface 20 cm of infertile red soils by 2.1~7.5 g kg-1 with an average of 4.7 g kg-1 within the first5 years. The organic carbon content in infertile red soils which received organic manure annually increasedlinearly in the first 10 years, thereafter it slowed down, implying that the fertility of the infertile red soilscould reach middle or high level in 1O years if the soil was managed properly It was estimated that throughexploitation of wastelands, re-establishment of fuel forests and improvement of soil fertility, soils in red soilregion of China could sequester an extra 1.50 × 1015 g of atmospheric CO2.展开更多
Based on the functional process of carbon sequestration of forest, we categorize carbon sequestration in two parts: carbon capture and carbon storage. Here,Pinus sylvestris var.mongolica was used to simulate the dyna...Based on the functional process of carbon sequestration of forest, we categorize carbon sequestration in two parts: carbon capture and carbon storage. Here,Pinus sylvestris var.mongolica was used to simulate the dynamic changing process of carbon sequestration of forest in a century using tree growth formula and the cost of carbon capture and sequestration. We found that the total carbon captured and stored by 100-year-old P. sylvestris var.mongolica are both 966 kg C tree^-1. On the assumption that the current year is the planting year, the present total carbon sequestration value (capital value) of 100-year-old P. sylvesrtis var.mongolica is 54.78 USD tree^-1 at the discount rate of 3%, with the present total carbon capture value of 18.92 USD tree^-1 and carbon storage value of 35.86 USD tree^-1. The dynamic process of the annual value of carbon capture is ilustrated by an upside-down U shape curve, while that of carbon storage service folows an S shape curve. The combination of the dynamic processes of carbon capture value and carbon storage value represent the changing process of carbon sequestration value, which appears to be an S shape curve.展开更多
Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emissi...Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emission levels.For clarifying the space structure of a low-carbon eco-city,and combining the concept of"Combining Assessment with Construction"to track and contrast the construction of the low-carbon eco-city,this research selects quantifiable low-carbon eco-city spatial characteristics as indicators,and evaluates and analyzes the potential carbon emissions.Taking the Jinan Western New District as an example,diversity of construction land,travel carbon emission potential,and density and accessibility of adjacent road networks in the overall urban planning were measured.After the completion of the new urban area,the evaluation mainly reflected certain factors,such as the mixed degree of urban functions,the density of urban functions,the walking distance to bus stops and the density and number of bus stops.Dividing the levels and adding equal weights after index normalization,the carbon emission potential is evaluated at the two levels of the overall and fragmented areas.The results show that:(1)The low-carbon emission potential areas in the planning scheme basically reached the planned goals.(2)There is inconsistency between districts and indicators in the planning scheme.The diversity of construction land and the accessibility of the adjacent road network are relatively small;however,there is a large difference between the travel carbon emission potential and the road network accessibility.(3)Carbon emission potential after completion did not reach the planned expectation,and the low-carbon emission potential plots were concentrated in the Changqing Old City Area and Central Area of Dangjia Town Area.(4)The carbon emission indicators varied greatly in different areas,and there were serious imbalances in the density of public transportation lines and the mixed degree of urban functions.展开更多
文摘Field experiments on the decomposition of organic materials and the accumulation of organic carbon ininfertile red soils were conducted at the Ecological Experimental Station of Red Soil, the Chinese Academyof Sciences, and the potential of CO2 sequestration by reclamation and improving the fertility of these soils was estimated. Results showed that in infertile red soils, the humification coefficients of organic materials were rather high, ranging from 0.28 to 0.63 with an average of 0.43, which was 41% higher than those incorresponding red soils with medium fertility. This was mainly attributed to the high clay content, highacidity and low native organic matter content of infertile red soils. Compared to those in correspondingnormal red soils, the decomposition rates of organic materials were significantly lower in infertile red soilsin the first 2 yearst thereafter no significant difference was observed between those in the two kinds of soils.Depending on the kind and amount of organic manure applied, the soil properties and the rotation systems,annual application of organic manure with a rate of 4500 to 9000 kg ha-1 increased the organic carboncontent in surface 20 cm of infertile red soils by 2.1~7.5 g kg-1 with an average of 4.7 g kg-1 within the first5 years. The organic carbon content in infertile red soils which received organic manure annually increasedlinearly in the first 10 years, thereafter it slowed down, implying that the fertility of the infertile red soilscould reach middle or high level in 1O years if the soil was managed properly It was estimated that throughexploitation of wastelands, re-establishment of fuel forests and improvement of soil fertility, soils in red soilregion of China could sequester an extra 1.50 × 1015 g of atmospheric CO2.
基金the National Science and Technology Support Program(NO.2013BAC03B05)
文摘Based on the functional process of carbon sequestration of forest, we categorize carbon sequestration in two parts: carbon capture and carbon storage. Here,Pinus sylvestris var.mongolica was used to simulate the dynamic changing process of carbon sequestration of forest in a century using tree growth formula and the cost of carbon capture and sequestration. We found that the total carbon captured and stored by 100-year-old P. sylvestris var.mongolica are both 966 kg C tree^-1. On the assumption that the current year is the planting year, the present total carbon sequestration value (capital value) of 100-year-old P. sylvesrtis var.mongolica is 54.78 USD tree^-1 at the discount rate of 3%, with the present total carbon capture value of 18.92 USD tree^-1 and carbon storage value of 35.86 USD tree^-1. The dynamic process of the annual value of carbon capture is ilustrated by an upside-down U shape curve, while that of carbon storage service folows an S shape curve. The combination of the dynamic processes of carbon capture value and carbon storage value represent the changing process of carbon sequestration value, which appears to be an S shape curve.
基金The National Key Research and Development Program of China(2019YFD1100803)。
文摘Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emission levels.For clarifying the space structure of a low-carbon eco-city,and combining the concept of"Combining Assessment with Construction"to track and contrast the construction of the low-carbon eco-city,this research selects quantifiable low-carbon eco-city spatial characteristics as indicators,and evaluates and analyzes the potential carbon emissions.Taking the Jinan Western New District as an example,diversity of construction land,travel carbon emission potential,and density and accessibility of adjacent road networks in the overall urban planning were measured.After the completion of the new urban area,the evaluation mainly reflected certain factors,such as the mixed degree of urban functions,the density of urban functions,the walking distance to bus stops and the density and number of bus stops.Dividing the levels and adding equal weights after index normalization,the carbon emission potential is evaluated at the two levels of the overall and fragmented areas.The results show that:(1)The low-carbon emission potential areas in the planning scheme basically reached the planned goals.(2)There is inconsistency between districts and indicators in the planning scheme.The diversity of construction land and the accessibility of the adjacent road network are relatively small;however,there is a large difference between the travel carbon emission potential and the road network accessibility.(3)Carbon emission potential after completion did not reach the planned expectation,and the low-carbon emission potential plots were concentrated in the Changqing Old City Area and Central Area of Dangjia Town Area.(4)The carbon emission indicators varied greatly in different areas,and there were serious imbalances in the density of public transportation lines and the mixed degree of urban functions.