Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weas...Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weasel,steppe polecat and upland buzzard of carnivores as food respectively;adult passerine birds contributed 22.3%,47.7% and 69.1%,with hatchlings contributing 50.9%,25.6% and 1.70% to each respectively.δ 13 C values plotted against δ 15 N indicated significant partitioning in two-dimensional space among the three carnivores.It was reasonable to propose a food resource partitioning among alpine weasel,steppe polecat and upland buzzard,which partially revealed their co-existence mechanisms.展开更多
Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a tra...Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.展开更多
[Objective] This study was conducted to explore the spatial distribution of carbon and nitrogen in the sediments of Xiangxi River, which was the biggest tribu- tary near the Three Gorges Dam. [Method] Sediment samples...[Objective] This study was conducted to explore the spatial distribution of carbon and nitrogen in the sediments of Xiangxi River, which was the biggest tribu- tary near the Three Gorges Dam. [Method] Sediment samples were collected using customized cylindrical samplers at three sites along Xiangxi River estuary in May, 2015 to measure the contents of total carbon, total nitrogen and an isotope of car- bon δ^13C. [Result] The total carbon content in the sediments varied from 1.74% to 3.52%, and the total nitrogen content varied from 0.1% to 0.3%. The average total carbon content in the sediments near the estuary was lower than in the upstream. The total carbon content in the sediments near the estuary gradually decreased with depth increasing. However, the variations in total nitrogen content in both horizontal direction (along the river from the estuary to the upstream) and vertical direction were not so obvious as in total carbon content. The isotopic analysis showed the δ^13C value increased with depth increasing. The overall δ^13C near the estuary was lower than that in the upstream. [Conclusioal The results will provide scientific refer- ences for the distribution of biogenic elements in sediments of Xiangxi River and the evolution process of aquatic ecosystem.展开更多
Re-evaluation of the post-glacial sea level derived from the Barbados coral-reef borings suggests slightly revised depth ranges and timing of melt-water pulses MWP-1A (96-76 m, 14.3-14.0 ka cal BP) and 1B (58-45 m, 11...Re-evaluation of the post-glacial sea level derived from the Barbados coral-reef borings suggests slightly revised depth ranges and timing of melt-water pulses MWP-1A (96-76 m, 14.3-14.0 ka cal BP) and 1B (58-45 m, 11.5-11.2 ka cal BP), respectively. Ages of non-reef sea-level indicators from the Sunda Shelf, the East China Sea and Yellow Sea for these two intervals are unreliable because of the well-documented radiocarbon ( 14C) plateau, but their vertical clustering corresponds closely with MWP-1A and 1B depth ranges. Close correlation of the revised sea-level curve with Greenland ice-core data suggests that the 14C plateau may be related to oceanographic-atmospheric changes due to rapid sea-level rise, fresh-water input, and impaired ocean circulation. MWP-1A appears to have occurred at the end of Blling Warm Transition, suggesting that the rapid sea-level rise may have resulted from lateral heat transport from low to high-latitude regions and subsequent abrupt ice-sheet collapses in both North America-Europe and Antarctica. An around 70 mm a -1 transgression during MWP-1A may have increased freshwater discharge to the North Atlantic by as much as an order of magnitude, thereby disturbing thermohaline circulation and initiating the Older Dryas global cooling.展开更多
The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon (COe and HCO3-) by plant...The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon (COe and HCO3-) by plants. The net photosynthetic COa assimilation (PN), the photosynthetic assimilation of CO2 and bicarbonate (PN'), the proportion of increased leaf area (lEA) and the stable carbon isotope composition (δ13C) of Orychophragmus violaceus (Ov) and Brassica juncea (B j) under three bicarbonate levels (5, 10 and 15 mm NaHCO3) were examined to determine the relationship among PN, PN' and fLA. PN', not PN, changed synchronously with fLA. Moreover, the proportions of exogenous bicarbonate and total bicarbonate (including exogenous bicarbonate and dissolved CO2-generated bicarbonate) utilised by Ov were 2.27 % and 5.28 % at 5 mm bicarbonate, 7.06 % and 13.28 % at 10 mm bicarbonate, and 8.55 % and 17.31% at 15 mm bicarbonate, respectively. Meanwhile, the propor- tions of exogenous bicarbonate and total bicarbonate uti- lised by Bj were 1.77 % and 3.28 % at 5 mm bicarbonate, 2.11% and 3.10 % at 10 mm bicarbonate, and 2.36 % and 3.09 % at 15 mm bicarbonate, respectively. Therefore, the dissolved CO2-generated bicarbonate and exogenous bicarbonate are important sources of inorganic carbon for plants.展开更多
The trophic ecology of the small yellow croaker (Larimichthys polyactis) was studied using stable isotope analyses. Samples were collected from July to September 2009 and 34 individuals from eight sites were examine...The trophic ecology of the small yellow croaker (Larimichthys polyactis) was studied using stable isotope analyses. Samples were collected from July to September 2009 and 34 individuals from eight sites were examined for stable carbon and nitrogen isotopes. Stable carbon isotope ratios (~3C) ranged from -20.67 to -15.43, while stable nitrogen isotope ratios (~SN) ranged 9.18-12.23. The relationship between fi^3C and ~SN suggested high resource partitioning in the sampling area. Significant differences in stable isotope values among the eight sampling sites may be linked to environmental diversities involving various physical processes (such as ocean current, wind and tide) and different carbon sources. Furthermore, the stable isotope ratios may also explain the ontogenetic variability in diet and feeding, because δ13C and δ15N varied significantly with increasing body size. The findings are consistent with other studies on diet analyses in small yellow croaker. It was also demonstrated that stable isotope analysis could be used to estimate the trophic characters of small yellow croaker in feeding patterns and migrating habits.展开更多
Decomposition experiments of 14C-labelled sickle alfalfa in chao soils of different texture and these soils after removal of CaCO3 were carried out under field and laboratory conditions respectively. The amount of res...Decomposition experiments of 14C-labelled sickle alfalfa in chao soils of different texture and these soils after removal of CaCO3 were carried out under field and laboratory conditions respectively. The amount of residual 14C in, or 14CO2 evolved from, the soils at intervals after the beginning of decomposition were measured and the distribution of native and labelled C between particle size fractions isolated from these soils was edtermined. Results showed that contents of both labelled (14C) and non-labelled (12C) carbon decreased with increasing particle size. The enrichment factor for 14C was higher than that for 12C in the clay fraction, the reverse being true for the silt enrichment factors. The effect of soil texture on the decomposition of plant material could not be observed in chao soils when the clay content was lower than 270g kg-1, while it became obvious once CaCO3 was removed from these soils. The decomposition rate of plant material in the soil from which the native CaCO3 was removed was correlated significantly to both the clay content of the soil and the application rate of CaCO3. A preliminary correction equation describing the effect of clay and CaCO3 on the decomposition of organic material in chao soil was derived from the results obtained.展开更多
A bidirectional labeling method was established to distinguish the proportions of HCO3- and CO2 utiliza- tion pathways of microalgae in Lake Hongfeng. The method was based on microalgae cultured in a medium by adding ...A bidirectional labeling method was established to distinguish the proportions of HCO3- and CO2 utiliza- tion pathways of microalgae in Lake Hongfeng. The method was based on microalgae cultured in a medium by adding equal concentrations of NaH13CO3 with different 613C values simultaneously. The inorganic carbon sources were quantified according to the stable carbon isotope composition in the treated microalgae. The effects of extracellular carbonic anhydrase (CAex) on the HCO3 and CO2 utilization pathways were distinguished using acetazolamide, a potent membrane-impermeable carbonic anhydrase inhibitor. The results show utilization of the added HCO3- was only 8% of the total carbon sources in karst lake. The proportion of the HCO3- utilization path- way was 52% of total inorganic carbon assimilation. Therefore, in the natural water of the karst area, the microalgae used less bicarbonate that preexisted in the aqueous medium than CO2 derived from the atmosphere. CAex increased the utilization of inorganic carbon from the atmosphere. The microalgae with CAex had greater carbon sequestration capacity in this karst area.展开更多
Mangroves accumulate sedimentary sequences, where cores can provide historical records of mangrove evolution with past climate change and human activity. The study traced the history of mangrove evolution during the p...Mangroves accumulate sedimentary sequences, where cores can provide historical records of mangrove evolution with past climate change and human activity. The study traced the history of mangrove evolution during the past one hundred years in a mangrove swamp of Maowei Sea, SW China. The sedimentation rates(0.38-0.95 cm yr^(-1)) were calculated on the basis of ln(^(210)Pb_(xs)/Al) and mass depth in the core sediments. Chemical tracers, such as δ^(13)C_(org) and C:N values, were utilized to trace the contribution of mangrove-derived organic matter using a ternary mixing model. Because of potential diagenetic alteration and / or overlap in the isotopic signatures of different components, simultaneous use of mangrove pollen diagrams can help to supplement some of these limitations. Combined with mangrove pollen, mangrove evolution was reconstructed and could be divided into three stages: flourishment(1886-1905 AD), slight degradation(1905-1949 AD) and rapid degradation period(1949-2007 AD), which was consistent with previous reports. The reclamation of mangrove swamps to shrimp ponds was the major reason for rapid degradation of mangrove ecosystems in recent years, rather than climate change in the region.展开更多
Bivalves and seaweeds are important cleaners that are widely used in integrated multi-trophic aquaculture (IMTA) systems. A beneficial relationship between seaweed and bivalve in the seaweed- based IMTA system has b...Bivalves and seaweeds are important cleaners that are widely used in integrated multi-trophic aquaculture (IMTA) systems. A beneficial relationship between seaweed and bivalve in the seaweed- based IMTA system has been confirmed, but the trophic importance of seaweed-derived particulate organic materials to the co-cultured bivalve is still unclear. We evaluated the trophic importance of the kelp Saccharinajaponica to the co-cultured scallop Chlamysfarreri in a typical IMTA farm in Sungo Bay (Weihai, North China). The dynamics of detritus carbon in the water were monitored during the culturing period. The proportion of kelp-derived organic matter in the diet of the co-cultured scallop was assessed via the stable carbon isotope method. Results showed that the detritus carbon in the water ranged from 75.52 to 265.19 ~tg/L, which was 25.6% to 73.8% of total particulate organic carbon (TPOC) during the study period. The amount of detritus carbon and its proportion in the TPOC changed throughout the culture cycle of the kelp. Stable carbon isotope analysis showed that the cultured scallop obtained 14.1% to 42.8% of its tissue carbon from the kelp, and that the percentages were closely correlated with the proportion of detritus carbon in the water (F=0.993, P=0.003). Evaluation showed that for 17 000 tons (wet weight) of annual scallop production, the kelp contributed about 139.3 tons of carbon (535.8 tons of dry mass). This confirms that cultured kelp plays a similar trophic role in IMTA systems as it does in a natural kelp bed. It is a major contributor to the detritus pool and supplies a vital food source to filter-feeding scallops in the IMTA system, especially during winter and early spring when phytoplankton are scarce.展开更多
Leaf morphological and physiological traits of Abies faxoniana growing in a natural forest along an altitudinal gradient were measured with the aim to identify the central mechanism for the marked variation in foliar ...Leaf morphological and physiological traits of Abies faxoniana growing in a natural forest along an altitudinal gradient were measured with the aim to identify the central mechanism for the marked variation in foliar δ13C determined by an isotope ratio mass spectrometer. There is a unimodal pattern of plant functional traits in these temperate and semi- humid areas. Stomatal parameters, specific leaf area, and C/N ratio increased, whereas C, N and δ13C values decreased with increasing altitude below 3000 m a.s.1. In contrast, they exhibited opposite trends above 3000 m a.s.l.. Our results demonstrated that high-altitude plants achieve higher water use efficiency (WUE) at the expense of decreasing nitrogen use efficiency (NUE), whereas plants at 3000 m can maintain a relatively higher NUE but a lower WUE. Such intra-specific differences in the trade-off between NUE and WUE may partially explain the altitudinal distribution of the plants in relation to moisture and nutrient availability. Our results clearly indicate that the functional relations between nutritional status and the structure of leaves are responsible for the altitudinal variations associated with δ13C. The pivotal role of specific leaf area in regulating plant adaptive responses provides a potential physiological mechanism for the observed growth advantage of populations occupying the medium altitude. These adaptive responses altitudinal gradients showed that an altitude to of approximately 3000 m a.s.1, is the optimum distribution zone for A. faxoniana, allowing the most vigorous growth and metabolism. These results improve our understanding of the various roles of environmental and biotic variables upon δ13C dynamics and provide useful information for subalpine coniferous forest management.展开更多
Carbon and oxygen isotope and dating analyses of foraminiferan in sediment cores collected from three different areas of the northern slope of the South China Sea were conducted, in order to examine the records of the...Carbon and oxygen isotope and dating analyses of foraminiferan in sediment cores collected from three different areas of the northern slope of the South China Sea were conducted, in order to examine the records of the gas hydrate decomposition events since the late Quaternary under the conditions of methane seepage. The results show that: 1) the δ13C values of the benthic foraminiferan Uvigerina spp. (size range of 0.25-0.35 ram) are from -0.212% to -0.021% and the δ180 values of the planktonic foraminiferan Globigerinoides ruber (size range of 0.25-0.35 ram) are from -0.311% to -0.060%; 2) three cores (ZD2, ZD3 and ZS5) from the bottom of a hole are aged for 11 814, 26 616 and 64 090 a corresponding to the early oxygen isotope stage (MIS) Ⅰ, Ⅲ and Ⅳ final period, respectively; 3) a negative-skewed layer of carbon isotope corresponds to that of MIS II (cold period), whose degree of negative bias is -0.2%0; and 4) the δ13C compositions of foraminiferans are similar to those of the Blake Ridge and the Gulf of Mexico sediments of the late Quaternary. According to the analysis, the reasons for these results are that the studied area is a typical area of methane seep environment in the area during MIS II due to the global sea-level fall and sea pressure decrease. Gas hydrate is decomposed and released, and a large number of light carbon isotopes of methane are released into the ocean, dissolved to inorganic carbon (DIC) pool and recorded in the foraminiferan shells. A pyrite layer developed in the negative bias layers of the foraminiferans confirms that the δ13C of foraminiferans is more affected by methane and less by the reduction of marine productivity and early diagenesis. The use of foraminiferan δ13C could accurately determine late Quaternary hydrate release events and provide evidence for both reconstructing the geological history of methane release events and exploring natural gas hydrate.展开更多
In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon i...In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon isotope ratio( δ^(13)C),leaf nitrogen content(LNC) and stomatal density(SD) with altitude variation in northsubtropical humid mountain climate zone of China.The results showed that LNC and SD both significantly increased linearly along the altitudinal gradient ranging from 1000 to 2200 m,whereas leafδ^(13)C exhibited a significantly negative correlation with the altitude.Such a correlation pattern differs obviously from that obtained in offshore low-altitude humid environment or inland high-altitude semi-arid environment,suggesting that the pattern of increasing δ^(13)C with the altitude cannot be generalized.The negative correlation between δ ^(13)C and altitude might be attributed mainly to the strengthening of carbon isotope fractionation in plants caused by increasing precipitation with altitude.Furthermore,there was a remarkable negative correlation between leaf δ ^(13)C and LNC.One possible reason was that increasing precipitation that operates to increase isotopic discrimination with altitude overtook the LNC in determining the sign of leaf δ ^(13)C.The significant negative correlation between leaf δ ^(13)C and SD over altitudes was also found in the present study,indicating that increases in SD with altitude would reduce,rather than enhance plant δ^(13)C values.展开更多
Pedogenic carbonates, found extensively in arid and semiarid regions, are important in revealing regional climatic and environmental changes as well as the carbon cycle. In addition, stable carbon and oxygen isotopic ...Pedogenic carbonates, found extensively in arid and semiarid regions, are important in revealing regional climatic and environmental changes as well as the carbon cycle. In addition, stable carbon and oxygen isotopic compositions of pedogenic carbonates have been used to rebuild paleoecology (biomass and vegetation) and to estimate paleotemperature and paleoprecipitation during past geological time. By utilizing the stable carbon and oxygen isotopic compositions (δ13C and (δ18O) of secondary nodules in Ustic Vertisols, this study looked into the climatic and environmental changes in the dry valleys of the Yuanmou Basin, Yunnan Province, in southwestern China. The results showed that during the early Holocene, a warm-humid or hot-humid climate existed in the Yuanmou Basin, but since then fluctuations in climate have occurred, with a dry climate prevailing. A highly significant correlation (r = 0.92, n = 9) between δ13C and δ18O values of carbonates illustrated that there had been a continual shifting between cold-humid and warm-dry climates in southwestern China including the Yuanmou Basin since the early Holocene.展开更多
In order to understand the relative importance of anthropogenic and biological sources of carbonaceous aerosols in Northeast Asia,we measured total carbon(TC)and water-soluble organic carbon(WSOC)and their stable carb...In order to understand the relative importance of anthropogenic and biological sources of carbonaceous aerosols in Northeast Asia,we measured total carbon(TC)and water-soluble organic carbon(WSOC)and their stable carbon isotope ratios(d^(13)C)in total suspended particulates collected from Sapporo,northern Japan(43.07°N,141.36°E)over a 1-year period(during 2 September 2009and 5 October 2010).Temporal variations of TC showed a gradual decrease from mid-autumn to winter followed by a gradual increase to growing season with a peak in early summer.Both d^(13)C_(TC)and d^(13)C_(WSOC)showed very similar temporal trends with a gradual enrichment of^(13)C from mid-autumn to winter followed by a depletion in the^(13)C to early summer and thereafter it remained stable,except for few cases.Based on the results obtained together with the air mass trajectories,we found that biogenic emissions including biological particles(e.g.,pollen)and secondary organic aerosol formation from biogenic volatile organic compounds are the important sources of carbonaceous aerosols in spring/summer whereas fungal spores from soil and biomass burning and enhanced fossil fuel combustion contribute significantly in autumn/winter and in winter,respectively,in Northeast Asia.展开更多
Based on analyses of the components of crude oil hydrocarbons and carbon isotopes,the content of normal alkane decreased from 49.00% to 20.10% when moving from the No.3 to No.5 tectonic belt of the Lenghu area of the ...Based on analyses of the components of crude oil hydrocarbons and carbon isotopes,the content of normal alkane decreased from 49.00% to 20.10% when moving from the No.3 to No.5 tectonic belt of the Lenghu area of the Qaidam Basin,while cycloalkanes increased from 30.00% to 52.20% and aromatic and branch chain alkanes increased gradually as well. The maturity of sterane in crude oil is higher than that of its source-rock,which shows that the hydrocarbons were generated from a deep source-rock of high maturity around the tectonic belts of the Lenghu area. The analysis of the characteristics of carbon isotopes also shows that these isotopes of hydrocarbon compounds in the No.4 and No.5 tectonic belt are apparently heavier than those in the No.3 belt. The results of our research show that the hydrocarbons in the No.3 tectonic belt are mainly from a relatively rich sapropelic substance,while the hydrocarbons in the No.4 and No.5 tectonic belt originated mainly from organic matter of a relatively rich humic type substance.展开更多
Nitrate pollution in groundwater is a serious water quality problem that increases the risk of developing various cancers.Groundwater is the most important water resource and supports a population of 5 million in Anya...Nitrate pollution in groundwater is a serious water quality problem that increases the risk of developing various cancers.Groundwater is the most important water resource and supports a population of 5 million in Anyang area of the southern part of the North China Plain. Determining the source of nitrate pollution is the challenge in hydrology area due to the complex processes of migration and transformation. A new method is presented to determine the source of nitrogen pollution by combining the composition characteristics of stable carbon isotope in dissolved organic carbon in groundwater. The source of groundwater nitrate is dominated by agricultural fertilizers, as well as manure and wastewater. Mineralization, nitrification and mixing processes occur in the groundwater recharge area, whereas the confined groundwater area is dominated by denitrification processes.展开更多
Coastal lagoons with small catchment basins are highly sensitive to natural processes and anthropogenic activities. To figure out the environmental changes of a coastal lagoon and its contribution to carbon burial, tw...Coastal lagoons with small catchment basins are highly sensitive to natural processes and anthropogenic activities. To figure out the environmental changes of a coastal lagoon and its contribution to carbon burial, two sediment cores were collected in Xincun Lagoon, southeastern Hainan Island and (210) ~Pb activities, grain size parameters, total organic carbon(TOC), total nitrogen(TN), total inorganic carbon(TIC) and stable carbon isotopes(δ^(13)C) were measured. The results show that in 1770–1815, the decreasing water exchange capacity with outer open water, probably caused by the shifting and narrowing of the tidal inlet, not only diminished the currents and fined the sediments in the lagoon, but also reduced the organic matter of marine sources. From 1815 to 1950, the sedimentary environment of Xincun Lagoon was frequently influenced by storm events. These extreme events resulted in the high fluctuation of sediment grain size and sorting, as well as the great variation in contributions of terrestrial(higher plants, soils) and marine sources(phytoplankton, algae, seagrass). The extremely high content of TIC, compared to TOC before 1950 could be attributed to the large-scale coverage of coral reefs. However, with the boost of seawater aquaculture activities after 1970, the health growth of coral species was severely threatened, and corresponding production and inorganic carbon burial flux reduced. The apparent enhanced inorganic carbon burial rate after 1990 might result from the concomitant carbonate debris produced by seawater aquaculture. This result is important for local government long-term coastal management and environmental planning.展开更多
文摘Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weasel,steppe polecat and upland buzzard of carnivores as food respectively;adult passerine birds contributed 22.3%,47.7% and 69.1%,with hatchlings contributing 50.9%,25.6% and 1.70% to each respectively.δ 13 C values plotted against δ 15 N indicated significant partitioning in two-dimensional space among the three carnivores.It was reasonable to propose a food resource partitioning among alpine weasel,steppe polecat and upland buzzard,which partially revealed their co-existence mechanisms.
文摘Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.
基金Supported by Plan"948"of the Ministry of Water Resources(201408)
文摘[Objective] This study was conducted to explore the spatial distribution of carbon and nitrogen in the sediments of Xiangxi River, which was the biggest tribu- tary near the Three Gorges Dam. [Method] Sediment samples were collected using customized cylindrical samplers at three sites along Xiangxi River estuary in May, 2015 to measure the contents of total carbon, total nitrogen and an isotope of car- bon δ^13C. [Result] The total carbon content in the sediments varied from 1.74% to 3.52%, and the total nitrogen content varied from 0.1% to 0.3%. The average total carbon content in the sediments near the estuary was lower than in the upstream. The total carbon content in the sediments near the estuary gradually decreased with depth increasing. However, the variations in total nitrogen content in both horizontal direction (along the river from the estuary to the upstream) and vertical direction were not so obvious as in total carbon content. The isotopic analysis showed the δ^13C value increased with depth increasing. The overall δ^13C near the estuary was lower than that in the upstream. [Conclusioal The results will provide scientific refer- ences for the distribution of biogenic elements in sediments of Xiangxi River and the evolution process of aquatic ecosystem.
基金Special thanks to Woods Hole Oceanographic Institute's post-doc scholarship support to Liu,and many thanks to Jeffrey Donnelly a and Neal Driscoll for discussion and encouragement.
文摘Re-evaluation of the post-glacial sea level derived from the Barbados coral-reef borings suggests slightly revised depth ranges and timing of melt-water pulses MWP-1A (96-76 m, 14.3-14.0 ka cal BP) and 1B (58-45 m, 11.5-11.2 ka cal BP), respectively. Ages of non-reef sea-level indicators from the Sunda Shelf, the East China Sea and Yellow Sea for these two intervals are unreliable because of the well-documented radiocarbon ( 14C) plateau, but their vertical clustering corresponds closely with MWP-1A and 1B depth ranges. Close correlation of the revised sea-level curve with Greenland ice-core data suggests that the 14C plateau may be related to oceanographic-atmospheric changes due to rapid sea-level rise, fresh-water input, and impaired ocean circulation. MWP-1A appears to have occurred at the end of Blling Warm Transition, suggesting that the rapid sea-level rise may have resulted from lateral heat transport from low to high-latitude regions and subsequent abrupt ice-sheet collapses in both North America-Europe and Antarctica. An around 70 mm a -1 transgression during MWP-1A may have increased freshwater discharge to the North Atlantic by as much as an order of magnitude, thereby disturbing thermohaline circulation and initiating the Older Dryas global cooling.
基金supported by the National Key Basic Research Program of China(2013CB956701)the National Natural Science Foundation of China (No.31070365)+1 种基金the project on social development of Guizhou Province (SY[2010]3043)the State Key Laboratory of Environmental Geochemistry (SKLEG2014909)
文摘The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon (COe and HCO3-) by plants. The net photosynthetic COa assimilation (PN), the photosynthetic assimilation of CO2 and bicarbonate (PN'), the proportion of increased leaf area (lEA) and the stable carbon isotope composition (δ13C) of Orychophragmus violaceus (Ov) and Brassica juncea (B j) under three bicarbonate levels (5, 10 and 15 mm NaHCO3) were examined to determine the relationship among PN, PN' and fLA. PN', not PN, changed synchronously with fLA. Moreover, the proportions of exogenous bicarbonate and total bicarbonate (including exogenous bicarbonate and dissolved CO2-generated bicarbonate) utilised by Ov were 2.27 % and 5.28 % at 5 mm bicarbonate, 7.06 % and 13.28 % at 10 mm bicarbonate, and 8.55 % and 17.31% at 15 mm bicarbonate, respectively. Meanwhile, the propor- tions of exogenous bicarbonate and total bicarbonate uti- lised by Bj were 1.77 % and 3.28 % at 5 mm bicarbonate, 2.11% and 3.10 % at 10 mm bicarbonate, and 2.36 % and 3.09 % at 15 mm bicarbonate, respectively. Therefore, the dissolved CO2-generated bicarbonate and exogenous bicarbonate are important sources of inorganic carbon for plants.
基金Supported by the Special Research Fund for the National Non-profit in East China Sea Fisheries Research Institute (No. 2009M01)
文摘The trophic ecology of the small yellow croaker (Larimichthys polyactis) was studied using stable isotope analyses. Samples were collected from July to September 2009 and 34 individuals from eight sites were examined for stable carbon and nitrogen isotopes. Stable carbon isotope ratios (~3C) ranged from -20.67 to -15.43, while stable nitrogen isotope ratios (~SN) ranged 9.18-12.23. The relationship between fi^3C and ~SN suggested high resource partitioning in the sampling area. Significant differences in stable isotope values among the eight sampling sites may be linked to environmental diversities involving various physical processes (such as ocean current, wind and tide) and different carbon sources. Furthermore, the stable isotope ratios may also explain the ontogenetic variability in diet and feeding, because δ13C and δ15N varied significantly with increasing body size. The findings are consistent with other studies on diet analyses in small yellow croaker. It was also demonstrated that stable isotope analysis could be used to estimate the trophic characters of small yellow croaker in feeding patterns and migrating habits.
文摘Decomposition experiments of 14C-labelled sickle alfalfa in chao soils of different texture and these soils after removal of CaCO3 were carried out under field and laboratory conditions respectively. The amount of residual 14C in, or 14CO2 evolved from, the soils at intervals after the beginning of decomposition were measured and the distribution of native and labelled C between particle size fractions isolated from these soils was edtermined. Results showed that contents of both labelled (14C) and non-labelled (12C) carbon decreased with increasing particle size. The enrichment factor for 14C was higher than that for 12C in the clay fraction, the reverse being true for the silt enrichment factors. The effect of soil texture on the decomposition of plant material could not be observed in chao soils when the clay content was lower than 270g kg-1, while it became obvious once CaCO3 was removed from these soils. The decomposition rate of plant material in the soil from which the native CaCO3 was removed was correlated significantly to both the clay content of the soil and the application rate of CaCO3. A preliminary correction equation describing the effect of clay and CaCO3 on the decomposition of organic material in chao soil was derived from the results obtained.
基金supported by the National Natural Sciences Foundation of China (U1612441)Foundation of Guizhou Province ([2014] 2131)Doctor Foundation of Guizhou Normal University (0514014)
文摘A bidirectional labeling method was established to distinguish the proportions of HCO3- and CO2 utiliza- tion pathways of microalgae in Lake Hongfeng. The method was based on microalgae cultured in a medium by adding equal concentrations of NaH13CO3 with different 613C values simultaneously. The inorganic carbon sources were quantified according to the stable carbon isotope composition in the treated microalgae. The effects of extracellular carbonic anhydrase (CAex) on the HCO3 and CO2 utilization pathways were distinguished using acetazolamide, a potent membrane-impermeable carbonic anhydrase inhibitor. The results show utilization of the added HCO3- was only 8% of the total carbon sources in karst lake. The proportion of the HCO3- utilization path- way was 52% of total inorganic carbon assimilation. Therefore, in the natural water of the karst area, the microalgae used less bicarbonate that preexisted in the aqueous medium than CO2 derived from the atmosphere. CAex increased the utilization of inorganic carbon from the atmosphere. The microalgae with CAex had greater carbon sequestration capacity in this karst area.
基金supported by the National Key Scientific Research Project on Global Climate Change (Grant No. 2010CB 951203)the National Natural Science Foundation of China (Grant Nos. 41206057, 41576067, 41376075 and 41576061)
文摘Mangroves accumulate sedimentary sequences, where cores can provide historical records of mangrove evolution with past climate change and human activity. The study traced the history of mangrove evolution during the past one hundred years in a mangrove swamp of Maowei Sea, SW China. The sedimentation rates(0.38-0.95 cm yr^(-1)) were calculated on the basis of ln(^(210)Pb_(xs)/Al) and mass depth in the core sediments. Chemical tracers, such as δ^(13)C_(org) and C:N values, were utilized to trace the contribution of mangrove-derived organic matter using a ternary mixing model. Because of potential diagenetic alteration and / or overlap in the isotopic signatures of different components, simultaneous use of mangrove pollen diagrams can help to supplement some of these limitations. Combined with mangrove pollen, mangrove evolution was reconstructed and could be divided into three stages: flourishment(1886-1905 AD), slight degradation(1905-1949 AD) and rapid degradation period(1949-2007 AD), which was consistent with previous reports. The reclamation of mangrove swamps to shrimp ponds was the major reason for rapid degradation of mangrove ecosystems in recent years, rather than climate change in the region.
基金Supported by the National Key Technologies R&D Program of China(No.2011BAD13B02)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406403)the Marine Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020704)
文摘Bivalves and seaweeds are important cleaners that are widely used in integrated multi-trophic aquaculture (IMTA) systems. A beneficial relationship between seaweed and bivalve in the seaweed- based IMTA system has been confirmed, but the trophic importance of seaweed-derived particulate organic materials to the co-cultured bivalve is still unclear. We evaluated the trophic importance of the kelp Saccharinajaponica to the co-cultured scallop Chlamysfarreri in a typical IMTA farm in Sungo Bay (Weihai, North China). The dynamics of detritus carbon in the water were monitored during the culturing period. The proportion of kelp-derived organic matter in the diet of the co-cultured scallop was assessed via the stable carbon isotope method. Results showed that the detritus carbon in the water ranged from 75.52 to 265.19 ~tg/L, which was 25.6% to 73.8% of total particulate organic carbon (TPOC) during the study period. The amount of detritus carbon and its proportion in the TPOC changed throughout the culture cycle of the kelp. Stable carbon isotope analysis showed that the cultured scallop obtained 14.1% to 42.8% of its tissue carbon from the kelp, and that the percentages were closely correlated with the proportion of detritus carbon in the water (F=0.993, P=0.003). Evaluation showed that for 17 000 tons (wet weight) of annual scallop production, the kelp contributed about 139.3 tons of carbon (535.8 tons of dry mass). This confirms that cultured kelp plays a similar trophic role in IMTA systems as it does in a natural kelp bed. It is a major contributor to the detritus pool and supplies a vital food source to filter-feeding scallops in the IMTA system, especially during winter and early spring when phytoplankton are scarce.
基金supported by the NationalNatural Science Foundation of China (Grant No. 31170373)Young Talent Team Program of Institute of Mountain Hazards and Environment (SDSQB-2012-01)
文摘Leaf morphological and physiological traits of Abies faxoniana growing in a natural forest along an altitudinal gradient were measured with the aim to identify the central mechanism for the marked variation in foliar δ13C determined by an isotope ratio mass spectrometer. There is a unimodal pattern of plant functional traits in these temperate and semi- humid areas. Stomatal parameters, specific leaf area, and C/N ratio increased, whereas C, N and δ13C values decreased with increasing altitude below 3000 m a.s.1. In contrast, they exhibited opposite trends above 3000 m a.s.l.. Our results demonstrated that high-altitude plants achieve higher water use efficiency (WUE) at the expense of decreasing nitrogen use efficiency (NUE), whereas plants at 3000 m can maintain a relatively higher NUE but a lower WUE. Such intra-specific differences in the trade-off between NUE and WUE may partially explain the altitudinal distribution of the plants in relation to moisture and nutrient availability. Our results clearly indicate that the functional relations between nutritional status and the structure of leaves are responsible for the altitudinal variations associated with δ13C. The pivotal role of specific leaf area in regulating plant adaptive responses provides a potential physiological mechanism for the observed growth advantage of populations occupying the medium altitude. These adaptive responses altitudinal gradients showed that an altitude to of approximately 3000 m a.s.1, is the optimum distribution zone for A. faxoniana, allowing the most vigorous growth and metabolism. These results improve our understanding of the various roles of environmental and biotic variables upon δ13C dynamics and provide useful information for subalpine coniferous forest management.
基金Project(40976035) supported by the National Natural Science Foundation of ChinaProject(2009CB219501) supported by the National Basic Research Program of ChinaProject(908-ZC-I-07) supported by the Special Program of Comprehensive Survey and Assessment Offshore China Sea
文摘Carbon and oxygen isotope and dating analyses of foraminiferan in sediment cores collected from three different areas of the northern slope of the South China Sea were conducted, in order to examine the records of the gas hydrate decomposition events since the late Quaternary under the conditions of methane seepage. The results show that: 1) the δ13C values of the benthic foraminiferan Uvigerina spp. (size range of 0.25-0.35 ram) are from -0.212% to -0.021% and the δ180 values of the planktonic foraminiferan Globigerinoides ruber (size range of 0.25-0.35 ram) are from -0.311% to -0.060%; 2) three cores (ZD2, ZD3 and ZS5) from the bottom of a hole are aged for 11 814, 26 616 and 64 090 a corresponding to the early oxygen isotope stage (MIS) Ⅰ, Ⅲ and Ⅳ final period, respectively; 3) a negative-skewed layer of carbon isotope corresponds to that of MIS II (cold period), whose degree of negative bias is -0.2%0; and 4) the δ13C compositions of foraminiferans are similar to those of the Blake Ridge and the Gulf of Mexico sediments of the late Quaternary. According to the analysis, the reasons for these results are that the studied area is a typical area of methane seep environment in the area during MIS II due to the global sea-level fall and sea pressure decrease. Gas hydrate is decomposed and released, and a large number of light carbon isotopes of methane are released into the ocean, dissolved to inorganic carbon (DIC) pool and recorded in the foraminiferan shells. A pyrite layer developed in the negative bias layers of the foraminiferans confirms that the δ13C of foraminiferans is more affected by methane and less by the reduction of marine productivity and early diagenesis. The use of foraminiferan δ13C could accurately determine late Quaternary hydrate release events and provide evidence for both reconstructing the geological history of methane release events and exploring natural gas hydrate.
基金supported by Hunan Province Natural Science Foundation (No.2015JJ2062)the State Key Laboratory of Soil and Sustainable Agriculture (Grant No.Y412201416)the Scientific Research Fund of Hunan Provincial Education Department (Grant No.14A054)
文摘In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon isotope ratio( δ^(13)C),leaf nitrogen content(LNC) and stomatal density(SD) with altitude variation in northsubtropical humid mountain climate zone of China.The results showed that LNC and SD both significantly increased linearly along the altitudinal gradient ranging from 1000 to 2200 m,whereas leafδ^(13)C exhibited a significantly negative correlation with the altitude.Such a correlation pattern differs obviously from that obtained in offshore low-altitude humid environment or inland high-altitude semi-arid environment,suggesting that the pattern of increasing δ^(13)C with the altitude cannot be generalized.The negative correlation between δ ^(13)C and altitude might be attributed mainly to the strengthening of carbon isotope fractionation in plants caused by increasing precipitation with altitude.Furthermore,there was a remarkable negative correlation between leaf δ ^(13)C and LNC.One possible reason was that increasing precipitation that operates to increase isotopic discrimination with altitude overtook the LNC in determining the sign of leaf δ ^(13)C.The significant negative correlation between leaf δ ^(13)C and SD over altitudes was also found in the present study,indicating that increases in SD with altitude would reduce,rather than enhance plant δ^(13)C values.
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1998040800).
文摘Pedogenic carbonates, found extensively in arid and semiarid regions, are important in revealing regional climatic and environmental changes as well as the carbon cycle. In addition, stable carbon and oxygen isotopic compositions of pedogenic carbonates have been used to rebuild paleoecology (biomass and vegetation) and to estimate paleotemperature and paleoprecipitation during past geological time. By utilizing the stable carbon and oxygen isotopic compositions (δ13C and (δ18O) of secondary nodules in Ustic Vertisols, this study looked into the climatic and environmental changes in the dry valleys of the Yuanmou Basin, Yunnan Province, in southwestern China. The results showed that during the early Holocene, a warm-humid or hot-humid climate existed in the Yuanmou Basin, but since then fluctuations in climate have occurred, with a dry climate prevailing. A highly significant correlation (r = 0.92, n = 9) between δ13C and δ18O values of carbonates illustrated that there had been a continual shifting between cold-humid and warm-dry climates in southwestern China including the Yuanmou Basin since the early Holocene.
基金supported by the Environment Research and Technology Development Fund(B-0903)of the Ministry of the Environment,Japan,the Japan Society for the Promotion of Science(JSPS)Japan through Grant-in-Aid No.24221001985 Project of National Key Universities,Tianjin University,China
文摘In order to understand the relative importance of anthropogenic and biological sources of carbonaceous aerosols in Northeast Asia,we measured total carbon(TC)and water-soluble organic carbon(WSOC)and their stable carbon isotope ratios(d^(13)C)in total suspended particulates collected from Sapporo,northern Japan(43.07°N,141.36°E)over a 1-year period(during 2 September 2009and 5 October 2010).Temporal variations of TC showed a gradual decrease from mid-autumn to winter followed by a gradual increase to growing season with a peak in early summer.Both d^(13)C_(TC)and d^(13)C_(WSOC)showed very similar temporal trends with a gradual enrichment of^(13)C from mid-autumn to winter followed by a depletion in the^(13)C to early summer and thereafter it remained stable,except for few cases.Based on the results obtained together with the air mass trajectories,we found that biogenic emissions including biological particles(e.g.,pollen)and secondary organic aerosol formation from biogenic volatile organic compounds are the important sources of carbonaceous aerosols in spring/summer whereas fungal spores from soil and biomass burning and enhanced fossil fuel combustion contribute significantly in autumn/winter and in winter,respectively,in Northeast Asia.
基金Project 2009011 supported by the Resource Exploration Projects of the Ministry of Land and Resources of Chinathe State Key Laboratory of Petroleum Resource and Prospecting of China Petroleum University (Beijing)
文摘Based on analyses of the components of crude oil hydrocarbons and carbon isotopes,the content of normal alkane decreased from 49.00% to 20.10% when moving from the No.3 to No.5 tectonic belt of the Lenghu area of the Qaidam Basin,while cycloalkanes increased from 30.00% to 52.20% and aromatic and branch chain alkanes increased gradually as well. The maturity of sterane in crude oil is higher than that of its source-rock,which shows that the hydrocarbons were generated from a deep source-rock of high maturity around the tectonic belts of the Lenghu area. The analysis of the characteristics of carbon isotopes also shows that these isotopes of hydrocarbon compounds in the No.4 and No.5 tectonic belt are apparently heavier than those in the No.3 belt. The results of our research show that the hydrocarbons in the No.3 tectonic belt are mainly from a relatively rich sapropelic substance,while the hydrocarbons in the No.4 and No.5 tectonic belt originated mainly from organic matter of a relatively rich humic type substance.
基金Projects(41072179,41002083)supported by the National Natural Science Foundation of China
文摘Nitrate pollution in groundwater is a serious water quality problem that increases the risk of developing various cancers.Groundwater is the most important water resource and supports a population of 5 million in Anyang area of the southern part of the North China Plain. Determining the source of nitrate pollution is the challenge in hydrology area due to the complex processes of migration and transformation. A new method is presented to determine the source of nitrogen pollution by combining the composition characteristics of stable carbon isotope in dissolved organic carbon in groundwater. The source of groundwater nitrate is dominated by agricultural fertilizers, as well as manure and wastewater. Mineralization, nitrification and mixing processes occur in the groundwater recharge area, whereas the confined groundwater area is dominated by denitrification processes.
基金Under the auspices of National Natural Science Foundation of China(No.41530962)
文摘Coastal lagoons with small catchment basins are highly sensitive to natural processes and anthropogenic activities. To figure out the environmental changes of a coastal lagoon and its contribution to carbon burial, two sediment cores were collected in Xincun Lagoon, southeastern Hainan Island and (210) ~Pb activities, grain size parameters, total organic carbon(TOC), total nitrogen(TN), total inorganic carbon(TIC) and stable carbon isotopes(δ^(13)C) were measured. The results show that in 1770–1815, the decreasing water exchange capacity with outer open water, probably caused by the shifting and narrowing of the tidal inlet, not only diminished the currents and fined the sediments in the lagoon, but also reduced the organic matter of marine sources. From 1815 to 1950, the sedimentary environment of Xincun Lagoon was frequently influenced by storm events. These extreme events resulted in the high fluctuation of sediment grain size and sorting, as well as the great variation in contributions of terrestrial(higher plants, soils) and marine sources(phytoplankton, algae, seagrass). The extremely high content of TIC, compared to TOC before 1950 could be attributed to the large-scale coverage of coral reefs. However, with the boost of seawater aquaculture activities after 1970, the health growth of coral species was severely threatened, and corresponding production and inorganic carbon burial flux reduced. The apparent enhanced inorganic carbon burial rate after 1990 might result from the concomitant carbonate debris produced by seawater aquaculture. This result is important for local government long-term coastal management and environmental planning.