Citation of the C60^4+ is the same in the two collisions. The strong C+ peak produced in Ar^+-C60 must be due to the elastic collisions (nuclear stopping), because the Ar+ is heavy enough to knock out the C^+ from C60...Citation of the C60^4+ is the same in the two collisions. The strong C+ peak produced in Ar^+-C60 must be due to the elastic collisions (nuclear stopping), because the Ar+ is heavy enough to knock out the C^+ from C60 molecule. In general, the excitation energy depends on the projectile velocity, charge, and mass. Direct vibronic excitation by elastic collisions (nuclear stopping) is predicted for slow heavy ions, while the electronic excitation (electronic stopping) is dominant for fast ions[1]. For example, Schlatholter, et al.[2] found a strong velocity effect in collisions of He^+ with fullerene in the velocity range from 0.1 to 1 a.u. With increasing velocity, the C2 evaporation process decreases and the multi-fragmentation is linearly increasing.展开更多
We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociat...We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2^+, the dissociation mechanism of CO2^+ is discussed. The conformational variation of CO2^+ from linear to bent on the photodissociation dynamics of CO2^+ is verified.展开更多
The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali...The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts.展开更多
In this study,the three-windows method,the jump-ratio method and the R-map method in energy-filtered transmission electron microscopy(EFTEM) have been applied to mapping carbon distribution in 35SiMn steel after a que...In this study,the three-windows method,the jump-ratio method and the R-map method in energy-filtered transmission electron microscopy(EFTEM) have been applied to mapping carbon distribution in 35SiMn steel after a quenching-partitioning treatment.The carbon contamination is successfully suppressed by using EFTEM and plasma-cleaning TEM samples.Compared to the three-windows method and the jump-ratio method,the R-map method provides carbon distribution with less noises,and is insensitive to changes in sample thickness.We have demonstrated that the R-map method is a better way for carbon mapping in middle-carbon steel without the influence of carbon contamination.展开更多
文摘Citation of the C60^4+ is the same in the two collisions. The strong C+ peak produced in Ar^+-C60 must be due to the elastic collisions (nuclear stopping), because the Ar+ is heavy enough to knock out the C^+ from C60 molecule. In general, the excitation energy depends on the projectile velocity, charge, and mass. Direct vibronic excitation by elastic collisions (nuclear stopping) is predicted for slow heavy ions, while the electronic excitation (electronic stopping) is dominant for fast ions[1]. For example, Schlatholter, et al.[2] found a strong velocity effect in collisions of He^+ with fullerene in the velocity range from 0.1 to 1 a.u. With increasing velocity, the C2 evaporation process decreases and the multi-fragmentation is linearly increasing.
基金This work was supported by the Natural Science Foundation of Changzhou Institute of Technology (No.YN1507), Undergraduate Training Program for Innovation of Changzhou Institute of Technology (No.J150245), the China Postdoctoral Science Foundation (No.2013M531506), the National Natural Science Foundation of China (No.21273212).
文摘We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2^+, the dissociation mechanism of CO2^+ is discussed. The conformational variation of CO2^+ from linear to bent on the photodissociation dynamics of CO2^+ is verified.
文摘The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB630800 and 2009CB623701)National Natural Science Foundation of China(Grant No.51001064)+1 种基金the Innovation Method Program(Grant No.2010IM031300)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20100002120047)
文摘In this study,the three-windows method,the jump-ratio method and the R-map method in energy-filtered transmission electron microscopy(EFTEM) have been applied to mapping carbon distribution in 35SiMn steel after a quenching-partitioning treatment.The carbon contamination is successfully suppressed by using EFTEM and plasma-cleaning TEM samples.Compared to the three-windows method and the jump-ratio method,the R-map method provides carbon distribution with less noises,and is insensitive to changes in sample thickness.We have demonstrated that the R-map method is a better way for carbon mapping in middle-carbon steel without the influence of carbon contamination.