In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ligands are used to tune/stabilize the morphology of nanost...In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ligands are used to tune/stabilize the morphology of nanostructures. Here, we develop a facile electrochemical method to directly convert Pt wires to Pt concave icosahedra and nanocubes on carbon paper through the linear sweep voltammetry in a classic three-electrode electrochemical cell. The Pt wire, carbon paper and Ag/AgCl(3 mol L-1 KCl) are used as the counter, working and reference electrodes, respectively.Impressively, the formed Pt nanostructures exhibit better electrocatalytic activity towards the hydrogen evolution compared to the commercial Pt/C catalyst. This work provides a simple and effective way for direct conversion of Pt wires into well-defined Pt nanocrystals with clean surface. We believe it can also be used for preparation of other metal nanocrystals,such as Au and Pd, from their bulk materials, which could exhibit various promising applications.展开更多
基金supported by the Ministry of Education under AcRF Tier 2 (ARC 19/15, No. MOE2014-T2-2-093 MOE2015-T2-2-057+6 种基金 MOE2016-T2-2-103 MOE2017-T2-1-162)AcRF Tier 1 (2016-T1-001-147 2016-T1-002-051 2017-T1-001-150 2017-T1-002-119)Nanyang Technological University under StartUp Grant (M4081296.070.500000) in Singapore
文摘In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ligands are used to tune/stabilize the morphology of nanostructures. Here, we develop a facile electrochemical method to directly convert Pt wires to Pt concave icosahedra and nanocubes on carbon paper through the linear sweep voltammetry in a classic three-electrode electrochemical cell. The Pt wire, carbon paper and Ag/AgCl(3 mol L-1 KCl) are used as the counter, working and reference electrodes, respectively.Impressively, the formed Pt nanostructures exhibit better electrocatalytic activity towards the hydrogen evolution compared to the commercial Pt/C catalyst. This work provides a simple and effective way for direct conversion of Pt wires into well-defined Pt nanocrystals with clean surface. We believe it can also be used for preparation of other metal nanocrystals,such as Au and Pd, from their bulk materials, which could exhibit various promising applications.