期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
SiC质耐火材料的碳化氮化制备及性能 被引量:1
1
作者 吴小贤 黄朝晖 +2 位作者 房明浩 刘艳改 叶定云 《硅酸盐学报》 EI CAS CSCD 北大核心 2011年第3期441-446,共6页
以Si粉和SiC颗粒为原料,采用碳化-氮化反应在1 400℃和1 500℃制备了SiC质耐火材料。采用X射线衍射仪、扫描电子显微镜和能谱仪等对试样的物相组成、显微结构和微区成分进行了分析,研究了原料组成和烧成温度对材料烧结性能、力学性能和... 以Si粉和SiC颗粒为原料,采用碳化-氮化反应在1 400℃和1 500℃制备了SiC质耐火材料。采用X射线衍射仪、扫描电子显微镜和能谱仪等对试样的物相组成、显微结构和微区成分进行了分析,研究了原料组成和烧成温度对材料烧结性能、力学性能和抗热震性能的影响,并对原料组成和烧成温度进行了优化。结果表明:所制备的SiC质耐火材料的主要物相组成为α-SiC、β-SiC和Si2N2O;随着Si粉加入量的增加,试样的体积密度和抗折强度先增加后降低。1 400℃制备的试样的体积密度和抗折强度高于1 500℃制备的试样的;Si粉添加量为25%(质量分数),烧成温度为1 400℃时试样的性能最优,其体积密度为2.45 g/cm3,抗折强度为96.85 MPa,1 200℃热震一次后残余抗折强度达68.78 MPa。 展开更多
关键词 耐火材料 碳化氮化
原文传递
高比表面积石墨化氮化碳的制备及应用 被引量:10
2
作者 李敏 李海岩 +3 位作者 孙发民 李洁 张凌峰 袁忠勇 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2014年第1期158-168,共11页
介绍了具有高比表面积石墨化氮化碳的制备及其应用。采用引入可调的纳米孔结构(包括硬模板法、软模板法)或控制形貌等方法,制备得到高比表面积的氮化碳。相比于体相氮化碳,高比表面积的氮化碳具有更多的反应活性位,与客体分子具有更大... 介绍了具有高比表面积石墨化氮化碳的制备及其应用。采用引入可调的纳米孔结构(包括硬模板法、软模板法)或控制形貌等方法,制备得到高比表面积的氮化碳。相比于体相氮化碳,高比表面积的氮化碳具有更多的反应活性位,与客体分子具有更大的接触面积,因此在实际应用中,例如光催化光电化学、碱催化等的有机多相催化,以及气体及有机污染物的吸附等领域表现出较高的反应活性。 展开更多
关键词 高比表面积 石墨氮化 吸附
下载PDF
磺酸化磁性氮化碳固相萃取-超高液相色谱-串联质谱筛检淡水鱼中孔雀石绿和隐色孔雀石绿 被引量:6
3
作者 孟二琼 念琪循 +3 位作者 李峰 张秋萍 许茜 王春民 《色谱》 CAS CSCD 北大核心 2023年第8期673-682,共10页
孔雀石绿(MG)及其代谢产物隐色孔雀石绿(LMG)在水产品中禁止检出,但违规使用行为屡禁不止,淡水鱼为抽检不合格率最高的水产品,因此,淡水鱼中MG和LMG的灵敏筛检对水产品食用安全非常重要。该工作研制了磺酸化磁性氮化碳(S-MGCN)材料,在... 孔雀石绿(MG)及其代谢产物隐色孔雀石绿(LMG)在水产品中禁止检出,但违规使用行为屡禁不止,淡水鱼为抽检不合格率最高的水产品,因此,淡水鱼中MG和LMG的灵敏筛检对水产品食用安全非常重要。该工作研制了磺酸化磁性氮化碳(S-MGCN)材料,在考察其作为优良的磁性固相萃取(MSPE)吸附剂的基础上,以空白样品的加标回收率为指标,对S-MGCN用量、吸附时间、溶液pH、离子强度、洗脱溶液种类和体积等影响因素进行了优化,建立了基于S-MGCN的MSPE方法以提取淡水鱼中的MG及LMG,结合超高效液相色谱-串联质谱(UPLC-MS/MS),进行目标物的灵敏筛检。研究表明,S-MGCN对MG和LMG具有良好的吸附效率(94.2%以上),且净化样品基质效果好。该方法样品前处理简便,有机试剂的使用量少(5 mL),萃取时间短(2 min)。对两种目标物的检出限和定量限分别为0.075μg/kg和0.25μg/kg,灵敏度高于国标法(0.5μg/kg);在0.25~20.0μg/kg内线性关系良好(r>0.998),方法的回收率为88.8%~105.9%,日内和日间的相对标准偏差(RSD)均小于14%,准确度和精密度与国标法相当。最后,通过实际样品的检测验证了该方法的实际应用可行性。该文建立的基于S-MGCN的MSPE方法是一种高效环保的方法,为实际样品孔雀石绿和隐色孔雀石绿的灵敏筛检提供了新的方法学参考。 展开更多
关键词 磁性固相萃取 磺酸磁性氮化 超高效液相色谱-串联质谱 孔雀石绿 隐色孔雀石绿 淡水鱼
下载PDF
富含介孔结构的氮化碳/碳纳米管复合催化剂高效电催化还原CO_(2)为CO
4
作者 刘丙泽 钮东方 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期960-972,共13页
氮掺杂材料中的吡啶氮被认为是电还原CO_(2)为CO的最活跃的氮催化位点.以双氰胺(dicyandiamide,DCDA)为氮源,氧化碳纳米管(carbon oxide nanotubes,CNTs-O)为分散剂,通过静电吸附-煅烧法制备了富含吡啶氮的氮化碳/碳纳米管(CN_(x)/CNTs... 氮掺杂材料中的吡啶氮被认为是电还原CO_(2)为CO的最活跃的氮催化位点.以双氰胺(dicyandiamide,DCDA)为氮源,氧化碳纳米管(carbon oxide nanotubes,CNTs-O)为分散剂,通过静电吸附-煅烧法制备了富含吡啶氮的氮化碳/碳纳米管(CN_(x)/CNTs)介孔复合催化剂.通过改变DCDA与CNTs-O的质量比,合成了具有不同石墨化氮化碳(g-C_(3)N_(4))含量的复合催化剂.通过一系列表征及电化学测试得出,当DCDA/CNTs-O质量比为0.5时,得到的CN_(0.5)/CNTs具有最优的还原CO_(2)为CO的电催化性能.在-1.0 V vs.RHE下CN_(0.5)/CNTs的CO法拉第效率(Faradaic efficiency,FE)高达94.1%,生成CO的电流密度为-13.27 mA/cm^(2),通过24 h长时间电解后依然保持着较高的法拉第效率(FECO>85%). 展开更多
关键词 电还原CO_(2) CO 介孔 石墨氮化 纳米管
下载PDF
碳空位改性g-C_(3)N_(4)的制备及光催化性能 被引量:1
5
作者 李雪艳 蓝宸睿 +1 位作者 王冠龙 张秀芳 《大连工业大学学报》 CAS 北大核心 2022年第3期189-193,共5页
以三聚氰胺为原料,采用高温二次煅烧法合成了具有{100}和{002}晶面的碳空位g-C_(3)N_(4)材料(V_(C)-C_(3)N_(4)),通过XRD、SEM、EDS、EIS、DRS等对其形貌和晶型结构等特性进行表征。碳空位的引入提高了电子传递能力并缩小了禁带宽度,共... 以三聚氰胺为原料,采用高温二次煅烧法合成了具有{100}和{002}晶面的碳空位g-C_(3)N_(4)材料(V_(C)-C_(3)N_(4)),通过XRD、SEM、EDS、EIS、DRS等对其形貌和晶型结构等特性进行表征。碳空位的引入提高了电子传递能力并缩小了禁带宽度,共同促进了光催化降解活性。以罗丹明B为目标污染物的光催化降解实验表明,V_(C)-C_(3)N_(4)比g-C_(3)N_(4)对罗丹明B的光催化降解能力更强,降解率由53.0%提高至89.2%。自由基捕获实验表明超氧自由基为主要的活性物种,羟基自由基是次要的活性物种。 展开更多
关键词 石墨氮化 空位 光催 罗丹明B
下载PDF
Self-assembled S-scheme In_(2.77)S_(4)/K^(+)-doped g-C_(3)N_(4)photocatalyst with selective O_(2) reduction pathway for efficient H_(2)O_(2) production using water and air
6
作者 Qiqi Zhang Hui Miao +2 位作者 Jun Wang Tao Sun Enzhou Liu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期176-189,共14页
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(... The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics. 展开更多
关键词 Photocatalysis H_(2)O_(2) production K^(+)-doped g-C_(3)N_(4) In_(2.77)S_(4) S-scheme heterojunction
下载PDF
可见光/石墨相氮化碳/溴化氧铋/过二硫酸盐体系高效降解活性蓝19的增强效应及路径
7
作者 李嘉炜 李孟 +1 位作者 张一博 张倩 《环境工程学报》 CAS CSCD 北大核心 2023年第1期59-70,共12页
为探究光催化降解蒽醌染料活性蓝19(RB19)过程中蒽醌的光敏特性对去除率的影响,以石墨相氮化碳/溴化氧铋(g-C3N4/BiOBr)为光催化材料,引入光照(vis)与过二硫酸盐(PS),构成协同催化氧化体系,考察光激发产物半醌自由基(Q-·)的形成及... 为探究光催化降解蒽醌染料活性蓝19(RB19)过程中蒽醌的光敏特性对去除率的影响,以石墨相氮化碳/溴化氧铋(g-C3N4/BiOBr)为光催化材料,引入光照(vis)与过二硫酸盐(PS),构成协同催化氧化体系,考察光激发产物半醌自由基(Q-·)的形成及其参与、增强体系氧化能力的作用机制,采用单因素(材料投加量、初始pH、活性蓝19初始质量浓度、过硫酸盐投加量、光照强度)分析方法,探究Q-·增强效应的影响,使用降解动力学方法及LC/MS评估降解后废水的毒性。结果表明:Q-·的形成不仅加速了过硫酸盐的活化过程,Q-·与氢醌(H2Q)、醌(Q)形成的循环作用也强化了材料的光催化效应,在模拟太阳光照射下(300 W),催化剂用量为0.1 g·L^(-1)和PS投加量为400 mg·L^(-1)时,Q-·引发的长链式自由基反应使该体系在80 min内对40 mg·L^(-1)的RB19的降解率可达到100%;反应条件对催化效果影响的大小顺序为材料投加量>初始pH>RB19初始质量浓度>过硫酸盐投加量>光照强度;Q-·中间体的形成有效提高了体系内自由基的含量,是反应后废水毒性显著降低的主要原因。由此可知,体系内Q-·所引发的自降解自循环、长链式自由基效应是实现RB19高效降解的主要因素。本研究结果可为开发蒽醌类染料废水处理技术的开发及实际应用提供参考。 展开更多
关键词 可见光/石墨相氮化/溴氧铋/过二硫酸盐 高级氧 半醌自由基 蒽醌染料活性蓝19 光催
原文传递
Enhancing photo-generated carriers transfer of K-C_(3)N_(4)/UiO-66-NH_(2) with Er doping for efficient photocatalytic oxidation of furfural to furoic acid
8
作者 WANG Haocun LIU Lingtao +1 位作者 BIAN Junjie LI Chunhu 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第11期1617-1628,共12页
Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visi... Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visible light.The Er@K-C_(3)N_(4)/UiO-66-NH_(2) catalyst was synthesized using a straight-forward hydrothermal technique,and exhibited exceptional efficiency in the photocatalytic oxidation of furfural to furoic acid.The catalyst was thoroughly characterized,confirming the effective adjustment of the band gap energy of Er@K-C_(3)N_(4)/UiO-66-NH_(2).Upon the optimized reaction conditions,the conversion rate of furfural reached 89.3%,with a corresponding yield of furoic acid at 79.8%.The primary reactive oxygen species was identified as·O_(2)^(-) from ESR spectra and scavenger tests.The incorporation of Er and K into the catalyst enhanced the photogenerated carriers transfer rate,hence increasing the separating efficiency of photogenerated electron-hole pairs.This study expands the potential applications of rare earth element doped g-C_(3)N_(4) in the photocatalytic selective oxidation of furfurans. 展开更多
关键词 FURFURAL furoic acid selective catalytic oxidation MOFS carbon nitride
下载PDF
Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts 被引量:16
9
作者 刘亚男 王瑞霞 +5 位作者 杨正坤 杜虹 姜一帆 申丛丛 梁况 徐安武 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2135-2144,共10页
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4... With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance. 展开更多
关键词 Oxygen deficient zinc oxide Graphitic carbon nitride Hybrid photocatalysts PHOTODEGRADATION Z-scheme
下载PDF
Facile synthesis and enhanced photocatalytic H_2-evolution performance of NiS_2-modified g-C_3N_4 photocatalysts 被引量:11
10
作者 陈峰 杨慧 +1 位作者 王雪飞 余火根 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期296-304,共9页
NiS2 is a promising cocatalyst to improve the photocatalytic performance of g-C3N4 for the production of H2.However,the synthesis of the NiS2 cocatalyst usually requires harsh conditions,which risks destroying the mic... NiS2 is a promising cocatalyst to improve the photocatalytic performance of g-C3N4 for the production of H2.However,the synthesis of the NiS2 cocatalyst usually requires harsh conditions,which risks destroying the microstructures of the g-C3N4 photocatalysts.In this study,a facile and low-temperature(80 ℃) impregnation method was developed to prepare NiS2/g-C3N4 photocatalysts.First,the g-C3N4 powders were processed by the hydrothermal method in order to introduce oxygen-containing functional groups(such as-OH and-C0NH-) to the surface of g-C3N4.Then,the Ni^2+ ions could be adsorbed near the g-C3N4 via strong electrostatic interaction between g-C3N4 and Ni^2+ ions upon the addition of Ni(NO3)2 solution.Finally,NiS2 nanoparticles were formed on the surface of g-C3N4 upon the addition of TAA.It was found that the NiS2 nanoparticles were solidly and homogeneously grafted on the surface of g-C3N4,resulting in greatly improved photocatalytic H2production.When the amount of NiS2 was 3 wt%,the resultant NiS2/g-C3N4 photocatalyst showed the highest H2 evolution rate(116.343 μmol h^-1 g^-1),which is significantly higher than that of the pure g-C3N4(3 μmol h^-1 g^-1).Moreover,the results of a recycling test for the NiS2/g-C3N4(3 wt%)sample showed that this sample could maintain a stable and effective photocatalytic H2-evolution performance under visible-light irradiation.Based on the above results,a possible mechanism of the improved photocatalytic performance was proposed for the presented NiS2/g-C3N4 photocatalysts,in which the photogenerated electrons of g-C3N4 can be rapidly transferred to the NiS2 nanoparticles via the close and continuous contact between them;then,the photogenerated electrons rapidly react with H2O adsorbed on the surface of NiS2,which has a surficial metallic character and high catalytic activity,to produce H2.Considering the mild and facile synthesis method,the presented low-cost and highly efficient NiS2-modified g-C3N4 photocatalysts would have great potential for practical use in photocatalytic H2 production. 展开更多
关键词 Photocatalysis NiS2 Graphite-like carbon-nitride COCATALYST Visible-light photocatalytic hydrogen EVOLUTION
下载PDF
Electrodeposition of Cu_2O/g-C_3N_4 heterojunction film on an FTO substrate for enhancing visible light photoelectrochemical water splitting 被引量:3
11
作者 张声森 晏洁 +5 位作者 杨思源 徐悦华 蔡欣 张向超 彭峰 方岳平 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期365-371,共7页
An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by t... An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias. 展开更多
关键词 Cuprous oxide Graphitic carbon nitride Heterojunction film ELECTRODEPOSITION Visible light Photoelectrochemical water splitting Hydrogen evolution
下载PDF
Vanadium supported on graphitic carbon nitride as a heterogeneous catalyst for the direct oxidation of benzene to phenol 被引量:10
12
作者 王成 胡丽雅 +3 位作者 王美银 任远航 岳斌 贺鹤勇 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期2003-2008,共6页
A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations w... A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations were conducted which revealed a strong interaction between the vanadium species and g-C3N4 support.8V/g-C3N4 exhibited the highest activity and showed stable recyclability in the benzene hydroxylation reaction with a benzene conversion of 24.6%and phenol selectivity of 99.2%under the optimized conditions.The excellent catalytic performance of xV/g-C3N4 was due to the integration of vanadium species with high catalytic activity and the g-C3N4support in their interaction with the benzene substrate. 展开更多
关键词 Carbon nitride VANADIUM Benzene hydroxylation PHENOL IMPREGNATION
下载PDF
Solvent-assisted synthesis of porous g-C_3N_4 with efficient visible-light photocatalvtic performance for NO removal 被引量:6
13
作者 张文东 赵再望 +1 位作者 董帆 张育新 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期372-378,共7页
Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicoch... Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicochemical properties of the g-C3N4 were investigated by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,photoluminescence spectroscopy,diffuse-reflection spectroscopy,BET and BJH surface area characterization,and elemental analysis.The carbon content was found to have self-doped into the g-C3N4 matrix during the thermal polymerization of thiourea and ethanol.CN-W and CN-E showed considerably enhanced visible-light photocatalytic activity,with NO removal percentages of 37.2%and 48.3%,respectively.Compared with pure g-C3N4,both the short and long lifetimes of the charge carriers in CN-W and CN-E were found to be prolonged.The mechanism of improved visible-light photocatalytic activity was deduced.The present work may provide a facile route to optimize the microstructure of g-C3N4photocatalysts for high-performance environmental and energy applications. 展开更多
关键词 Solvent-assisted Graphitic carbon nitride Visible light Photocatalytic performance Nitrogen oxide removal
下载PDF
Preparation and application of g-C_3N_4-ZnS-DNA nanocomposite with enhanced electrocatalytic activity 被引量:2
14
作者 周鑫 邹菁 +2 位作者 张胜 潘敏 龚晚芸 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期287-295,共9页
We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nano... We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nanocomposite possessed the electrocatalytic activity of g-C3N4-ZnS and the conductivity of DNA.The presence of DNA was found to enhance the electrocatalytic response of the nanocomposite towards environmental hormones,e.g.pentachlorophenol and nonylphenol,owing to the interaction between g-C3N4-ZnS and DNA,indicating that a stable nanocomposite was formed.The three components showed synergistic effects during electrocatalysis.Electrochemical impedance spectra indicated that the g-C3N4-ZnS-DNA nanocomposite dramatically facilitated the electron transfer of a modified electrode.The co-doping of g-C3N4 film with ZnS and DNA doubled the electrochemical response of the modified electrode in comparison with that of unmodified g-C3N4 film.The detection limits(3 S/N) of pentachlorophenol and nonylphenol were3.3×10^-9 mol L^-1.Meanwhile,we propose a possible Z-scheme mechanism for electron transfer in the g-C3N4-ZnS-DNA nanocomposite and the possible pentachlorophenol and nonylphenol electrocatalytic oxidation mechanism.The g-C3N4-ZnS-DNA nanocomposite-modified electrode was demonstrated to be effective for electrochemical sensing of trace environmental hormones in water samples. 展开更多
关键词 Graphitic carbon nitride Zinc sulfide DNA NANOCOMPOSITE Electrocatalytic activity Environmental hormones
下载PDF
Preparation and characterization of ternary magnetic g-C_3N_4 composite photocatalysts for removal of tetracycline under visible light 被引量:6
15
作者 唐旭 倪良 +1 位作者 韩娟 王赟 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期447-457,共11页
A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocataly... A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocatalyst was found to show good stability for tetracycline degradation.The sample not only retained the magnetic properties of Fe_3O_4,allowing it to be recycled,but its photocatalytic properties could also be changed by controlling the temperature of the reaction system.The degradation intermediate products of tetracycline were further investigated by MS.This work provides a new facile strategy for the development of intelligent and recyclable photocatalytic materials. 展开更多
关键词 Fe_3O_4/g-C_3N_4 TETRACYCLINE MAGNETISM Intermediate products PHOTOCATALYST
下载PDF
NO reduction by CO over TiO_2-γ-Al_2O_3 supported In/Ag catalyst under lean burn conditions 被引量:4
16
作者 吴爽 李学兵 +4 位作者 方向晨 孙媛媛 孙京 周明东 臧树良 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期2018-2024,共7页
TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties ... TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties of the catalysts were studied by N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy,H2 temperature-programmed reduction and Fourier transform infrared spectroscopy.TiO2/γ-Al2O3 supported In/Ag is a good catalyst for the reduction of NO to N2.It displayed high dispersion,large amounts of surface active components and high NO adsorption capacity,which gave good catalytic performance and stability for the reduction of NO with CO under lean burn conditions.The silver species stabilized and improved the dispersion of the indium species.The introduction of TiO2 into the γ-Al2O3 support promoted NO adsorption and improved the dispersion of the indium species and silver species. 展开更多
关键词 Nitrogen oxide reduction with carbon monoxide Lean burn condition Indium/silver bimetallic catalyst Removal of nitrogen oxides
下载PDF
Effects of long-term elevated CO_2 on N_2-fixing,denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain 被引量:4
17
作者 郑俊强 韩士杰 +2 位作者 任飞荣 周玉梅 张岩 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期283-287,共5页
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete... A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities. 展开更多
关键词 elevated CO2 forest soil nitrifying enzyme denitrifying enzyme N2-fixing enzyme
下载PDF
Thermal nitridation of triazine motifs to heptazine-based carbon nitride frameworks for use in visible light photocatalysis 被引量:9
18
作者 林珍珍 林励华 王心晨 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2089-2094,共6页
A thermal nitridation route for the assembly and polymerization of molecular triazine units to heptazine-based covalent frameworks has been successfully established. The obtained conjugated carbon nitride polymers fea... A thermal nitridation route for the assembly and polymerization of molecular triazine units to heptazine-based covalent frameworks has been successfully established. The obtained conjugated carbon nitride polymers feature nanostructures that show enhanced photocatalytic reactivity for hydrogen production under visible light irradiation. 展开更多
关键词 Carbon nitride Thermal nitridation POLYMERIZATION PHOTOCATALYSIS Hydrogen evolution
下载PDF
Enhanced photochemical oxidation ability of carbon nitride by π-πstacking interactions with graphene 被引量:9
19
作者 郝强 郝思濛 +3 位作者 牛秀秀 李巽 陈代梅 丁浩 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期278-286,共9页
A one-pot method for the preparation of g-C3N4/reduced graphene oxide(rGO) composite photocatalysts with controllable band structures is presented.The photocatalysts are characterized by Fouirer transform infrared s... A one-pot method for the preparation of g-C3N4/reduced graphene oxide(rGO) composite photocatalysts with controllable band structures is presented.The photocatalysts are characterized by Fouirer transform infrared spectroscopy,X-ray diffraction,scanning electron microscope,transmission electron microscope,and Mott-Schottky analysis.The valance band(VB) of g-C3N4 exhibits a noticeable positive shift upon hybridizing with rGO,and thus results in a strong photo-oxidation ability.The g-C3N4/rGO composites show a higher photodegradation activity for 2,4-dichlorophenol(2,4-DCP) and rhodamine B(RhB) under visible light irradiation(λ≥420 ran).The g-C3N4/rGO-1sample exhibits the highest photocatalytic activity,which is 1.49 and 1.52 times higher than that of bulk g-C3N4 for 2,4-DCP and 1.52 times degradation,respectively.The enhanced photocatalytic activity for g-C3N4 originates from the improved visible light usage,enhanced electronic conductivity and photo-oxidation ability by the formed strong π-π stacking interactions with rGO. 展开更多
关键词 Graphitic carbon nitride Graphene oxide π–π stacking PHOTOCATALYST Interaction
下载PDF
High-efficiency oxidative esterification of furfural to methylfuroate with a non-precious metal Co-N-C/MgO catalyst 被引量:3
20
作者 霍娜 马红 +6 位作者 王新红 王天龙 王刚 王婷 候磊磊 高进 徐杰 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第7期1148-1154,共7页
From both fundamental and practical perspectives, the production of chemicals from biomass re-sources using high-efficiency non-precious metal catalysts is important. However, many processes require addition of stoic... From both fundamental and practical perspectives, the production of chemicals from biomass re-sources using high-efficiency non-precious metal catalysts is important. However, many processes require addition of stoichiometric or excess quantities of base, which leads to high energy consump-tion, leaching problems, and side reactions. In this study, we investigated the high-efficiency oxida-tive esterification of furfural to methylfuroate by molecular oxygen with a Co-N-C/MgO catalyst. The catalyst was prepared by direct pyrolysis of a cobalt(Ⅱ) phenanthroline complex on MgO at 800℃ under N2 atmosphere. From furfural, 93.0% conversion and 98.5% selectivity toward methylfuroate were achieved under 0.5 MPa O2 with reaction at 100 ℃ for 12 h without a basic additive. The con-version and selectivity were much higher than those obtained with cobalt catalysts produced by pyrolysis of a cobalt(Ⅱ) phenanthroline complex on activated carbon or typical basic supports, in-cluding NaX, NaY, and CaO. X-ray photoelectron spectroscopy, X-ray diffraction, transmission elec-tron microscopy, and experimental results revealed that the high efficiency of Co-N-C/MgO for pro-duction of methylfuroate was closely related to the cobalt-nitrogen-doped carbon species and its catalytic ability in hydrogen abstraction. In contrast, Co-N-C(HCl) that synthesized by removing MgO with HCl from Co-N-C/MgO, as the catalyst produced mainly an acetal as a condensation prod-uct, and chloride ions had a negative effect on the oxidative esterification. Although the catalytic performance of the cobalt-nitrogen-doped carbon species was greatly affected by HCl treatment, it could be recovered to a great extent by addition of MgO. Moreover, changes in the oxygen pressure hardly affected the oxidative esterification of furfural with Co-N-C/MgO. This study not only pro-vides an effective approach to prepare methylfuroate, but also for designing high-performance non-precious metal catalysts for the oxidative esterification of biomass-derived compounds. 展开更多
关键词 CatalysisCobalt-nitrogen-doped carbon FURFURAL Methylfuroate MGO Oxidative esterification
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部