This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃sp...This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.展开更多
The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to deter...The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to determine the relationship between the physico-chemical properties and the catalytic performance. As a result of the good metal dispersion and large number of surface oxygen species, the Ru/Ti0.9 Zr0.1O2 catalyst presents the best catalytic activity among the tested samples. The effects of the operating conditions on the reaction are investigated and the optimal reaction conditions are determined. Based on the relationship between the by-products concentration and the reaction time, the reaction path for the catalytic oxidation of aniline is established. Carbonaceous deposits on the surface of the support are known to be the main reason for catalyst deactivation. The catalysts maintain a constant activity even after three consecutive cycles.展开更多
Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Rama...Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Raman spectra. It is found that Ni-Fe alloy exhibits significant catalytic effect on the graphitization of the carbon fibers at low temperatures. The degree of graphitization of the carbon fibers coated with Ni-Fe alloy (57.91% Fe, mass fraction) reaches 69.0% through heat treatment at 1 250 °C. However, the degree of graphitization of the carbon fibers without Ni-Fe alloy is only 30.1% after being heat-treated at 2 800 °C. The catalytic effect of Ni-Fe alloy on graphitization of carbon fibers is better than that of Ni or Fe at the same temperature, indicating that Ni and Fe elements have synergic catalytic function. Furthermore, Fe content in the Ni-Fe alloy also influences catalytic effect. The catalytic graphitization of Ni-Fe alloy follows the dissolution-precipitation mechanism.展开更多
An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by t...An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.展开更多
Single crystalline 3C-SiC epitaxial layers are grown on φ 50mm Si wafers by a new resistively heated CVD/LPCVD system,using SiH_4,C_2H_4 and H_2 as gas precursors.X-ray diffraction and Raman scattering measurements a...Single crystalline 3C-SiC epitaxial layers are grown on φ 50mm Si wafers by a new resistively heated CVD/LPCVD system,using SiH_4,C_2H_4 and H_2 as gas precursors.X-ray diffraction and Raman scattering measurements are used to investigate the crystallinity of the grown films.Electrical properties of the epitaxial 3C-SiC layers with thickness of 1~3μm are measured by Van der Pauw method.The improved Hall mobility reaches the highest value of 470cm 2/(V·s) at the carrier concentration of 7.7×10 17 cm -3 .展开更多
Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed tha...Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.展开更多
Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution a...Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution and Fourier transform infrared spectroscopy (FTIR). Batch adsorption experiments were carried out to investigate the adsorption behavior of modified ACFs for methyl orange(MO) from its aqueous solutions. The results show that the adsorption isotherms of MO onto modified ACFs well follows the Langmuir isotherm equation. The adsorption kinetics of MO can be well described by the pseudo second-order kinetic model. The adsorption process involves the intra-particle diffusion, but is not the only rate-controlling step. Thermodynamic parameters including AG, AH and AS were calculated, suggesting that the adsorption of MO onto modified ACFs is a spontaneous, exothermic and physisorption process. FTIR result indicates that the major adsorption mechanism of modified ACFs for MO is hydrogen bond.展开更多
The preferential oxidation of CO (CO‐PROX) is a hot topic because of its importance in pro‐ton‐exchange membrane fuel cells (PEMFCs). Au catalysts are highly active in CO oxidation. Howev‐er, their activities ...The preferential oxidation of CO (CO‐PROX) is a hot topic because of its importance in pro‐ton‐exchange membrane fuel cells (PEMFCs). Au catalysts are highly active in CO oxidation. Howev‐er, their activities still need to be improved at the PEMFC operating temperatures of 80–120 °C. In the present study, Au nanoparticles of average size 2.6 nm supported on ceria‐modified Al2O3 were synthesized and characterized using powder X‐ray diffraction, nitrogen physisorption, transmission electron and scanning transmission electron microscopies, temperature‐programmed hydrogen reduction (H2‐TPR), Raman spectroscopy, and in situ diffuse‐reflectance infrared Fourier‐transform spectroscopy. Highly dispersed Au nanoparticles and strong structures formed by Au–support in‐teractions were the main active species on the ceria surface. The Raman and H2‐TPR results show that the improved catalytic performance of the Au catalysts can be attributed to enhanced strong metal–support interactions and the reducibility caused by ceria doping. The formation of oxygen vacancies on the catalysts increased their activities in CO‐PROX. The synthesized Au catalysts gave excellent catalytic performances with high CO conversions (>97%) and CO2 selectivities (>50%) in the temperature range 80–150 °C.展开更多
Four methods, including voltammetric measurement of double layer capacitance, surface oxides reduction, under potential deposition of Cu and carbon monoxide (CO) stripping have been applied to evaluate the real surf...Four methods, including voltammetric measurement of double layer capacitance, surface oxides reduction, under potential deposition of Cu and carbon monoxide (CO) stripping have been applied to evaluate the real surface area of a polycrystalline Pd (pc-Pd) electrode. The results reveal that the second and third methods lead to consistent results with deviations below 5%. And from the determined double layer capacitance and CO stripping charge, it is deduced that the double layer capacity unit area is 23.1±0.4μF/cm2 and the saturated CO adlayer should be ca. 0.66 ML in order to ensure that the real surface area as determined is consistent with the other two techniques. The applicability as well as the attentions when applying these techniques for the determination of the real surface area of pc-Pd electrodes have been discussed.展开更多
Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The N...Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.展开更多
A series of highly dispersed platinum‐deposited porous g‐C3N4 (Pt/pg‐C3N4) were successfully fabricated by a simple in situ photoreduction strategy using chloroplatinic acid and porous g‐C3N4 as precursors. Porou...A series of highly dispersed platinum‐deposited porous g‐C3N4 (Pt/pg‐C3N4) were successfully fabricated by a simple in situ photoreduction strategy using chloroplatinic acid and porous g‐C3N4 as precursors. Porous g‐C3N4 was fabricated by a pretreatment strategy using melamine as a raw material.The morphology, porosity, phase, chemical structure, and optical and electronic properties ofas‐prepared Pt/pg‐C3N4 were characterized. The photocatalytic activity of as‐prepared Pt/pg‐C3N4was preliminarily evaluated by the degradation of aqueous azo dyes methyl orange under visible light irradiation. The as‐prepared Pt/pg‐C3N4 were further applied to the degradation and mineralization of aqueous 4‐fluorophenol. The recyclability of Pt/pg‐C3N4 was evaluated under four consecutive photocatalytic runs.展开更多
Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from...Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from 850 to 1 100 ℃ at a total residence time of 1 s. Steady-state deposition rates as functions of reactor length and of temperature,investigated at different n(H2) /n(MTS) values,show that hydrogen exhibits strongly influences on the deposition rate. Especially,the deposition of Si co-deposit can be obtained in broader substrate length and at higher temperatures with increasing hydrogen partial pressure. Influence of hydrogen on the deposition process was also studied using gas phase composition and deposit composition analysis at various n(H2) /n(MTS) . SEM micrographs directly show the variation of surface morphologies at various n(H2) /n(MTS) . It can be found that the crystal grain of the deposit at 1 100 ℃ is better developed and the crystallization is also improved with increasing n(H2) /n(MTS) .展开更多
A new mimic biological Semi permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was first used as a passive sampler to concentrate and determine 16 kinds of...A new mimic biological Semi permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was first used as a passive sampler to concentrate and determine 16 kinds of polynuclear aromatic hydrocarbons (PAHs) by means of capillary GC on an HP 5890 GC FID in coastal sediment porewater. The concentration of PAHs in sediment porewater for naphthalene(N), acenaphthlene(AL), acenaphthene(AE), fluorene(F), phenaphthene(P), anthracene(A), fluoranthene(FA), pyrene(Py), benzoanthracene(BA), chrysene(Chr), benzofluor anthene(BF), benzofluoranthene(BF), benzopyrene(BP),indeno[1,2,3, cd] Pyrene(IP), dibenzanthracene(DA) and benzo perylene(BP) were: 50.36, under detection limits(UD), 18.19, 8.41, 8.40, 1.44, UD, 8.01, 524.15, 168.47, 50.13, 123.66, 63.48, 27.40, 82.04 and 58,81 ng/L, respectively.展开更多
Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate p...Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.展开更多
To avoid the defects caused by the hydrogen evolution and improve the corrosion and wear properties of the electroplated films in the traditional aqueous bath electrodeposition,a supercritical carbon dioxide(Sc-CO2)em...To avoid the defects caused by the hydrogen evolution and improve the corrosion and wear properties of the electroplated films in the traditional aqueous bath electrodeposition,a supercritical carbon dioxide(Sc-CO2)emulsion was proposed to electrodeposite ternary nanocrystalline Co-Ni-P alloy films.Microstructure,corrosive and tribological properties of the Co-Ni-P films were investigated and compared with the ones electroplated by conventional method.The results show that the Co-Ni-P films produced with Sc-CO2assisted electrodeposition exhibit a more compact microstructure.The preferred orientation plane of hcp(110)for the Co-Ni-P films produced in conventional aqueous bath is changed to be hcp(100)for the one prepared in emulsified Sc-CO2bath.The microhardness,corrosion resistance and tribological properties of the Co-Ni-P films are substantially improved with the assistance of Sc-CO2in the electrodeposition bath.展开更多
The electron field emission from Si tips coated with nanocrystalline diamond films was investigated. The Si tips were formed by plasma etching, and nano-diamond films were deposited on the Si tips by hot filament chem...The electron field emission from Si tips coated with nanocrystalline diamond films was investigated. The Si tips were formed by plasma etching, and nano-diamond films were deposited on the Si tips by hot filament chemical vapor deposition. The radius of curvature for the Si tips was averagely about 50 nm. The microstructure of the diamond films was examined by scanning electron microscopy and Raman spectroscopy. The field emission properties of the samples were measured in an ion-pumped vacuum chamber at a pressure of 106 Pa. The experimental results showed that the nanostructured films on Si tips exhibited a lower value of the turn-on electric field than those on flat Si substrates. It was found that the tip shape and non-diamond phase in the films had a significant effect on the field emission properties of the films.展开更多
文摘This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.
基金supported by the National Natural Science Foundation of China(21333003,21577034)National Basic Research Program of China(2013CB933200)+1 种基金National High Technology Research and Development Program of China(2015AA034603)the Fundamental Research Funds for the Central Universities(WJ1514020)~~
文摘The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to determine the relationship between the physico-chemical properties and the catalytic performance. As a result of the good metal dispersion and large number of surface oxygen species, the Ru/Ti0.9 Zr0.1O2 catalyst presents the best catalytic activity among the tested samples. The effects of the operating conditions on the reaction are investigated and the optimal reaction conditions are determined. Based on the relationship between the by-products concentration and the reaction time, the reaction path for the catalytic oxidation of aniline is established. Carbonaceous deposits on the surface of the support are known to be the main reason for catalyst deactivation. The catalysts maintain a constant activity even after three consecutive cycles.
基金Project (2006CB600903) supported by the National Basic Research Program of ChinaProject (2010GK3208) supported by Science and Technology Program of Hunan Province, China
文摘Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Raman spectra. It is found that Ni-Fe alloy exhibits significant catalytic effect on the graphitization of the carbon fibers at low temperatures. The degree of graphitization of the carbon fibers coated with Ni-Fe alloy (57.91% Fe, mass fraction) reaches 69.0% through heat treatment at 1 250 °C. However, the degree of graphitization of the carbon fibers without Ni-Fe alloy is only 30.1% after being heat-treated at 2 800 °C. The catalytic effect of Ni-Fe alloy on graphitization of carbon fibers is better than that of Ni or Fe at the same temperature, indicating that Ni and Fe elements have synergic catalytic function. Furthermore, Fe content in the Ni-Fe alloy also influences catalytic effect. The catalytic graphitization of Ni-Fe alloy follows the dissolution-precipitation mechanism.
基金supported by the National Natural Science Foundation of China (21173088)the Science and Technology Project of Guangdong Province (2014A030312007, 2015A050502012, 2016A010104013)+1 种基金the China Postdoctoral Science Foundation (2016M592493)the Open Research Fund of Hunan Key Laboratory of Applied Environmental Photocatalysis (CCSU-XT-06),Changsha University~~
文摘An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.
文摘Single crystalline 3C-SiC epitaxial layers are grown on φ 50mm Si wafers by a new resistively heated CVD/LPCVD system,using SiH_4,C_2H_4 and H_2 as gas precursors.X-ray diffraction and Raman scattering measurements are used to investigate the crystallinity of the grown films.Electrical properties of the epitaxial 3C-SiC layers with thickness of 1~3μm are measured by Van der Pauw method.The improved Hall mobility reaches the highest value of 470cm 2/(V·s) at the carrier concentration of 7.7×10 17 cm -3 .
基金Projects(51071107,51001080,51201056)supported by the National Natural Science Foundation of ChinaProject(2010CB934703)supported by the National Basic Research Program of China+1 种基金Project(13211027)supported by Science and Technology Plan Project of Hebei Province,ChinaProject(2011008)supported by Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology,China
文摘Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2010FJ4075) supported by Science and Technology Planning Project of Hunan Province, China+1 种基金Project (CDJJ-10010205) supported by the Science Foundation of Changsha University, ChinaProject supported by the Construct Program of the Key Discipline in Hunan Province, China
文摘Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution and Fourier transform infrared spectroscopy (FTIR). Batch adsorption experiments were carried out to investigate the adsorption behavior of modified ACFs for methyl orange(MO) from its aqueous solutions. The results show that the adsorption isotherms of MO onto modified ACFs well follows the Langmuir isotherm equation. The adsorption kinetics of MO can be well described by the pseudo second-order kinetic model. The adsorption process involves the intra-particle diffusion, but is not the only rate-controlling step. Thermodynamic parameters including AG, AH and AS were calculated, suggesting that the adsorption of MO onto modified ACFs is a spontaneous, exothermic and physisorption process. FTIR result indicates that the major adsorption mechanism of modified ACFs for MO is hydrogen bond.
基金supported by the National Basic Research Program of China (973 Program, 2013CB934104)the National Natural Science Founda-tion of China (21225312, U1303192)~~
文摘The preferential oxidation of CO (CO‐PROX) is a hot topic because of its importance in pro‐ton‐exchange membrane fuel cells (PEMFCs). Au catalysts are highly active in CO oxidation. Howev‐er, their activities still need to be improved at the PEMFC operating temperatures of 80–120 °C. In the present study, Au nanoparticles of average size 2.6 nm supported on ceria‐modified Al2O3 were synthesized and characterized using powder X‐ray diffraction, nitrogen physisorption, transmission electron and scanning transmission electron microscopies, temperature‐programmed hydrogen reduction (H2‐TPR), Raman spectroscopy, and in situ diffuse‐reflectance infrared Fourier‐transform spectroscopy. Highly dispersed Au nanoparticles and strong structures formed by Au–support in‐teractions were the main active species on the ceria surface. The Raman and H2‐TPR results show that the improved catalytic performance of the Au catalysts can be attributed to enhanced strong metal–support interactions and the reducibility caused by ceria doping. The formation of oxygen vacancies on the catalysts increased their activities in CO‐PROX. The synthesized Au catalysts gave excellent catalytic performances with high CO conversions (>97%) and CO2 selectivities (>50%) in the temperature range 80–150 °C.
文摘Four methods, including voltammetric measurement of double layer capacitance, surface oxides reduction, under potential deposition of Cu and carbon monoxide (CO) stripping have been applied to evaluate the real surface area of a polycrystalline Pd (pc-Pd) electrode. The results reveal that the second and third methods lead to consistent results with deviations below 5%. And from the determined double layer capacitance and CO stripping charge, it is deduced that the double layer capacity unit area is 23.1±0.4μF/cm2 and the saturated CO adlayer should be ca. 0.66 ML in order to ensure that the real surface area as determined is consistent with the other two techniques. The applicability as well as the attentions when applying these techniques for the determination of the real surface area of pc-Pd electrodes have been discussed.
基金Supported by CAS Knowledge Innovation Program (No. KZCX2-YW-203)
文摘Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.
基金supported by the National Natural Science Foundation of China (51568049, 51208248, 51468043, 21366024)the National Science Fund for Excellent Young Scholars (51422807)+1 种基金the Natural Science Foundation of Jiangxi Province, China (20161BAB206118, 20114BAB213015)the Natural Science Foundation of Jiangxi Provincial Department of Education, China (GJJ14515, GJJ12456)~~
文摘A series of highly dispersed platinum‐deposited porous g‐C3N4 (Pt/pg‐C3N4) were successfully fabricated by a simple in situ photoreduction strategy using chloroplatinic acid and porous g‐C3N4 as precursors. Porous g‐C3N4 was fabricated by a pretreatment strategy using melamine as a raw material.The morphology, porosity, phase, chemical structure, and optical and electronic properties ofas‐prepared Pt/pg‐C3N4 were characterized. The photocatalytic activity of as‐prepared Pt/pg‐C3N4was preliminarily evaluated by the degradation of aqueous azo dyes methyl orange under visible light irradiation. The as‐prepared Pt/pg‐C3N4 were further applied to the degradation and mineralization of aqueous 4‐fluorophenol. The recyclability of Pt/pg‐C3N4 was evaluated under four consecutive photocatalytic runs.
基金Project supported by the One Hundred Talents Program of Chinese Academy of Sciences
文摘Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from 850 to 1 100 ℃ at a total residence time of 1 s. Steady-state deposition rates as functions of reactor length and of temperature,investigated at different n(H2) /n(MTS) values,show that hydrogen exhibits strongly influences on the deposition rate. Especially,the deposition of Si co-deposit can be obtained in broader substrate length and at higher temperatures with increasing hydrogen partial pressure. Influence of hydrogen on the deposition process was also studied using gas phase composition and deposit composition analysis at various n(H2) /n(MTS) . SEM micrographs directly show the variation of surface morphologies at various n(H2) /n(MTS) . It can be found that the crystal grain of the deposit at 1 100 ℃ is better developed and the crystallization is also improved with increasing n(H2) /n(MTS) .
文摘A new mimic biological Semi permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was first used as a passive sampler to concentrate and determine 16 kinds of polynuclear aromatic hydrocarbons (PAHs) by means of capillary GC on an HP 5890 GC FID in coastal sediment porewater. The concentration of PAHs in sediment porewater for naphthalene(N), acenaphthlene(AL), acenaphthene(AE), fluorene(F), phenaphthene(P), anthracene(A), fluoranthene(FA), pyrene(Py), benzoanthracene(BA), chrysene(Chr), benzofluor anthene(BF), benzofluoranthene(BF), benzopyrene(BP),indeno[1,2,3, cd] Pyrene(IP), dibenzanthracene(DA) and benzo perylene(BP) were: 50.36, under detection limits(UD), 18.19, 8.41, 8.40, 1.44, UD, 8.01, 524.15, 168.47, 50.13, 123.66, 63.48, 27.40, 82.04 and 58,81 ng/L, respectively.
基金Projects(51978244,51979088,51608169)supported by the National Natural Science Foundation of China。
文摘Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.
基金Project (2015A030306026) supported by the Natural Science Funds for Distinguished Young Scholar of Guangdong Province,ChinaProject (51275176) supported by the National Natural Science Foundation of China+1 种基金Project (2016A010102009) supported by the Science and Technology Planning of Guangdong Province,ChinaProject (201707010055) supported by the Science and Technology Planning of Guangzhou City,China
文摘To avoid the defects caused by the hydrogen evolution and improve the corrosion and wear properties of the electroplated films in the traditional aqueous bath electrodeposition,a supercritical carbon dioxide(Sc-CO2)emulsion was proposed to electrodeposite ternary nanocrystalline Co-Ni-P alloy films.Microstructure,corrosive and tribological properties of the Co-Ni-P films were investigated and compared with the ones electroplated by conventional method.The results show that the Co-Ni-P films produced with Sc-CO2assisted electrodeposition exhibit a more compact microstructure.The preferred orientation plane of hcp(110)for the Co-Ni-P films produced in conventional aqueous bath is changed to be hcp(100)for the one prepared in emulsified Sc-CO2bath.The microhardness,corrosion resistance and tribological properties of the Co-Ni-P films are substantially improved with the assistance of Sc-CO2in the electrodeposition bath.
基金Natural Science Foundation of China (Nos: 50005027 50345021 and 19904016)
文摘The electron field emission from Si tips coated with nanocrystalline diamond films was investigated. The Si tips were formed by plasma etching, and nano-diamond films were deposited on the Si tips by hot filament chemical vapor deposition. The radius of curvature for the Si tips was averagely about 50 nm. The microstructure of the diamond films was examined by scanning electron microscopy and Raman spectroscopy. The field emission properties of the samples were measured in an ion-pumped vacuum chamber at a pressure of 106 Pa. The experimental results showed that the nanostructured films on Si tips exhibited a lower value of the turn-on electric field than those on flat Si substrates. It was found that the tip shape and non-diamond phase in the films had a significant effect on the field emission properties of the films.