The use of the residues from renewable feedstock, besides the production of fuels, but also for the generation of other chemicals products, has become a priority. Superior plants have considerable potential as carbohy...The use of the residues from renewable feedstock, besides the production of fuels, but also for the generation of other chemicals products, has become a priority. Superior plants have considerable potential as carbohydrate, aryl and fatty acids sources. However, the separation of the main constituents of the samples is necessary for several purposes in the biorefinery concept. The acid hydrolysis and pyrolysis processes are very promising technology, however, some adjustments in the conditions of pyrolysis are needed for different biomasses since carbohydrates were detected (14%-17%) in the residues after the conventional acid hydrolysis of these uncommon biomasses (coffee husk and banana stem and stalk). On the other hand, it was showed that, by pyrolysis, it is possible to obtain from the solid residue after acid hydrolysis: pyrogenic carbon (charcoal with a yield of 48.5%-52.7%) for agriculture use (biochar) and valuable chemicals in the pyrolysis oil biooil fraction (that accounted by 26.4%-29.0%, free of water), such as lignin monomers (32.6%-56.4% of the bio-oil) and fatty acids (30%-52.5%).展开更多
This study evaluated the effect of carbon dioxide addition on microbiological quality during refrigerated storage of raw milk collected in Curitiba city, Brazil. A three factor-two level full factorial design was used...This study evaluated the effect of carbon dioxide addition on microbiological quality during refrigerated storage of raw milk collected in Curitiba city, Brazil. A three factor-two level full factorial design was used to investigate the effect of the pH (5.8-6.4), storage time (0-10 days) and storage temperature (5-10 ℃), on the responses, namely, mesophiles, psychrotrophs, lipolytic psychrotrophs and proteolytic psychrotrophs counts. Results showed that increase in pH and storage time had significant effect on the microbial count. No significant effect of storage temperature was observed for all the microorganisms studied. All responses were well predicted by selected mathematical models, as denoted by coefficient of determination above 0.95.展开更多
Current CO2 reduction and utilization technologies suffer from high energy consuming. Thus, an energy favourable route is in urgent demanding. CO2 mineralization is theoretically an energy releasing process for CO2 re...Current CO2 reduction and utilization technologies suffer from high energy consuming. Thus, an energy favourable route is in urgent demanding. CO2 mineralization is theoretically an energy releasing process for CO2 reduction and utilization, but an approach to recovery this energy has so far remained elusive. For the first time, here we proposed the principle of harvesting electrical energy directly from CO2 mineralization, and realized an energy output strategz1 for CO2 utilization and reduction via a CO2-mineralization fuel cell (CMFC) system. In this system CO2 and industrial alkaline wastes were used as feedstock, and industrial valuable NaHCO3 was produced concomitantly during the electricity generation. The highest power density of this system reached 5.5 W/m2, higher than many microbial fuel cells. The maximum open circuit voltage reached 0.452 V. Moreo- ver, this system was demonstrated viable to low concentration CO2 (10%) and other carhonation process. Thus, the existing of an energy-generating and environmentally friendly strategy to utilize CO2 as a supplement to the current scenario of CO2 emis- sion control has been demonstrated.展开更多
文摘The use of the residues from renewable feedstock, besides the production of fuels, but also for the generation of other chemicals products, has become a priority. Superior plants have considerable potential as carbohydrate, aryl and fatty acids sources. However, the separation of the main constituents of the samples is necessary for several purposes in the biorefinery concept. The acid hydrolysis and pyrolysis processes are very promising technology, however, some adjustments in the conditions of pyrolysis are needed for different biomasses since carbohydrates were detected (14%-17%) in the residues after the conventional acid hydrolysis of these uncommon biomasses (coffee husk and banana stem and stalk). On the other hand, it was showed that, by pyrolysis, it is possible to obtain from the solid residue after acid hydrolysis: pyrogenic carbon (charcoal with a yield of 48.5%-52.7%) for agriculture use (biochar) and valuable chemicals in the pyrolysis oil biooil fraction (that accounted by 26.4%-29.0%, free of water), such as lignin monomers (32.6%-56.4% of the bio-oil) and fatty acids (30%-52.5%).
文摘This study evaluated the effect of carbon dioxide addition on microbiological quality during refrigerated storage of raw milk collected in Curitiba city, Brazil. A three factor-two level full factorial design was used to investigate the effect of the pH (5.8-6.4), storage time (0-10 days) and storage temperature (5-10 ℃), on the responses, namely, mesophiles, psychrotrophs, lipolytic psychrotrophs and proteolytic psychrotrophs counts. Results showed that increase in pH and storage time had significant effect on the microbial count. No significant effect of storage temperature was observed for all the microorganisms studied. All responses were well predicted by selected mathematical models, as denoted by coefficient of determination above 0.95.
基金supported by the National Natural Science Foundation of China(Grant Nos.51254002 and 21336004)the National Basic Research Program of China(Grant No.2013BAC12B03)
文摘Current CO2 reduction and utilization technologies suffer from high energy consuming. Thus, an energy favourable route is in urgent demanding. CO2 mineralization is theoretically an energy releasing process for CO2 reduction and utilization, but an approach to recovery this energy has so far remained elusive. For the first time, here we proposed the principle of harvesting electrical energy directly from CO2 mineralization, and realized an energy output strategz1 for CO2 utilization and reduction via a CO2-mineralization fuel cell (CMFC) system. In this system CO2 and industrial alkaline wastes were used as feedstock, and industrial valuable NaHCO3 was produced concomitantly during the electricity generation. The highest power density of this system reached 5.5 W/m2, higher than many microbial fuel cells. The maximum open circuit voltage reached 0.452 V. Moreo- ver, this system was demonstrated viable to low concentration CO2 (10%) and other carhonation process. Thus, the existing of an energy-generating and environmentally friendly strategy to utilize CO2 as a supplement to the current scenario of CO2 emis- sion control has been demonstrated.